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ABSTRACT
Small RTTs (∼tens of microseconds), bursty flow arrivals, and a
large number of concurrent flows (thousands) in datacenters bring
fundamental challenges to congestion control as they either force
a flow to send at most one packet per RTT or induce a large queue
build-up. The widespread use of shallow buffered switches also
makes the problem more challenging with hosts generating many
flows in bursts. In addition, as link speeds increase, algorithms that
gradually probe for bandwidth take a long time to reach the fair-
share. An ideal datacenter congestion control must provide 1) zero
data loss, 2) fast convergence, 3) low buffer occupancy, and 4) high
utilization. However, these requirements present conflicting goals.

This paper presents a new radical approach, called ExpressPass,
an end-to-end credit-scheduled, delay-bounded congestion control
for datacenters. ExpressPass uses credit packets to control conges-
tion even before sending data packets, which enables us to achieve
bounded delay and fast convergence. It gracefully handles bursty
flow arrivals. We implement ExpressPass using commodity switches
and provide evaluations using testbed experiments and simulations.
ExpressPass converges up to 80 times faster than DCTCP in 10Gbps
links, and the gap increases as link speeds become faster. It greatly
improves performance under heavy incast workloads and signifi-
cantly reduces the flow completion times, especially, for small and
medium size flows compared to RCP, DCTCP, HULL, and DX under
realistic workloads.
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1 INTRODUCTION
Datacenter networks are rapidly growing in terms of size and link
speed [52]. A large datacenter network connects over 100 thousand
machines using a Clos network of shallow buffered switches [2, 28].
Each server is connected at 10/40Gbps today with 100Gbps on the
horizon. This evolution enables low latency and high bandwidth
communication within a datacenter. At the same time, it poses a
unique set of challenges for congestion control.

In datacenters, short propagation delay makes queuing delay a
dominant factor in end-to-end latency [3]. Thus, with higher link
speeds, fast convergence has become much more important [34].
However, with buffer per port per Gbps getting smaller, ensuring zero
loss and rapid convergence with traditional congestion control has
become much more challenging. In addition, Remote Direct Memory
Access (RDMA), recently deployed in datacenters [40, 41, 58], poses
more stringent latency and performance requirements (e.g., zero data
loss).

A large body of work addresses these challenges. One popular
approach is to react to early congestion signals in a more accurate
fashion, using ECN [3, 5, 55, 58] or network delay [38, 41, 47].
These approaches keep queuing lower and handle incast traffic much
better than the traditional TCP. However, they are still prone to
buffer overflows in bursty and incast traffic patterns. Thus, they rely
on priority flow control (PFC) or avoid an aggressive increase to
prevent data loss. In fact, small RTTs, bursty flow arrivals, and a
large number of concurrent flows in datacenters bring fundamental
challenges to this approach because these factors either force a
flow to send at most one packet per RTT or induce a large queue
build-up. We show in Section 2 that even a hypothetically ideal
rate control faces these problems. An alternative is to explicitly
determine the bandwidth of a flow or even the packet departure time
using a controller or a distributed algorithm [34, 47]. However, this
approach incurs signaling latency and is very difficult to scale to
large, high-speed (e.g., 100Gbps) datacenters, and is challenging to
make robust against failures and traffic churn [44].

Our approach uses credit packets to control the rate and schedule
the arrival of data packets. Receivers send credit packets to senders
on a per-flow basis in an end-to-end fashion. Switches then rate-limit
the credit packets on each link and determine the available bandwidth
for data packets flowing in the reverse direction. By shaping the flow
of credit packets in the network, the system proactively controls
congestion even before sending data packets. A sender naturally
learns the amount of traffic that is safe to send, rather than reacting
to the congestion signal after sending data. This allows us to quickly
ramp up flows without worrying about data loss. In addition, it
effectively solves incast because the arrival order of credit packets
at the bottleneck link naturally schedules the arrival of data packets
in the reverse path at packet granularity.

https://doi.org/10.1145/3098822.3098840
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Figure 1: Data queue length of window/rate-based protocol,
DCTCP and credit-based protocol

Realizing the idea of credit-based congestion control, however, is
not trivial. One might think that with the credit-based scheme a naïve
approach in which a receiver sends credit packets as fast as possible
(i.e. the maximum credit rate corresponding to its line rate) can
achieve fast convergence, high utilization, and fairness at the same
time. In a simple, single bottleneck network, this is true. However,
in large networks, the three goals are often at odds, and the naïve
approach presents serious problems: (i) it wastes bandwidth when
there are multiple bottlenecks, (ii) it does not guarantee fairness, and
(iii) the difference in path latency can cause queuing. In addition,
in networks with multiple paths, credit and data packets may take
asymmetric paths.

This paper demonstrates credit-based congestion control is a vi-
able alternative for datacenters by addressing the challenges and
answers key design questions that arise from a credit-based ap-
proach. The resulting design incorporates several components and
techniques: (i) rate-limiting credits at switches, (ii) symmetric hash-
ing to achieve path symmetry, (iii) credit feedback control, (iv)
random jitter, and (v) network calculus to determine the maximum
queuing.

Our feedback control achieves fast convergence and zero data
loss. It effectively mitigates utilization and fairness issues in multi-
bottleneck scenarios. We also demonstrate ExpressPass can be im-
plemented using commodity hardware. Our evaluation shows that
ExpressPass converges in just a few RTTs when a new flow starts
for both 10Gbps and 100Gbps, whereas DCTCP takes over hun-
dreds and thousands of RTTs respectively. In all of our evaluations,
ExpressPass did not exhibit any single data packet loss. Express-
Pass uses up to eight times less switch buffer than DCTCP, and
data buffer is kept close to zero at all times. Our evaluation with
realistic workload shows that ExpressPass significantly reduces flow
completion time especially for small to medium size flows when
compared to RCP [23], DCTCP [3], HULL [5], and DX [38], and
the gap increases with higher link speeds.

2 MOTIVATION
In large datacenter networks, it is not uncommon for a host to gener-
ate more than one thousand concurrent connections [3]. The num-
ber of concurrent flows traversing a bottleneck link can be large,
and flow arrival is often bursty [13] due to the popularity of the
partition/aggregate communication pattern [3]. However, existing
congestion control algorithms exhibit fundamental limitations under
such workload.

First, partition/aggregate patterns cause bursty packet arrivals that
result in packet drops (i.e., incast). The problem only worsens with
shallow buffered commodity switches that only provide 100KB of
packet buffer per 10Gbps port [12] as well as in high-speed network
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Figure 2: Convergence Time (testbed experiment)

(e.g., 100Gbps) where switch buffer per port per Gbps decreases as
link speeds go up 1. Second, even if congestion control algorithms
estimate each flow’s fair-share correctly, bursty flow arrival [3, 13]
still causes unbounded queue build-up.

To demonstrate that even an ideal rate control can result in un-
bounded queue build-up, we assume a hypothetical but ideal con-
gestion control that instantly determines the exact fair-share rate
for each sender using a per-packet timer. We then simulate a par-
tition/aggregate traffic pattern using ns-2. A single master server
continuously generates a 200B request to multiple workers using
persistent connections, and each worker responds with 1, 000B of
data for each request. We increase the fan-out from 32 to 2, 048 in an
8-ary fat tree topology with 10Gbps links with 5 µs delay, 16 core,
32 aggregator, 32 ToR switches and 128 hosts 2.

Figure 1 (a) shows the queue length at the bottleneck link. The
bars represent the minimum and maximum queue, and the box shows
25, 50, and 75%-tile values. Even though the senders transmit data
at their fair-share rate and packets within the same flow are perfectly
paced, the packet queue builds up significantly. This is because while
each flow knows how fast it should transmit its own packets, packets
from multiple flows may arrive in bursts. In the worst case, the
maximum data queue length grows proportionally to the number of
flows (depicted by the red line in Figure 1 (a)). Window or rate-based
congestion control is far from the ideal case because the congestion
control does not converge to the fair-share rate immediately. Figure 1
(b) demonstrates the queue build-up with DCTCP. The average /
maximum data queue lengths are much larger than ideal congestion
control because it takes multiple RTTs to react to queue build-up.

The result suggests that existing window- or rate-based protocols
have fundamental limitations on queuing, and the problem cannot be
solved even with a proactive approach, such as PERC [34]. Existing
congestion control will exhibit high tail latency. The unbounded
queue also forces a packet drop or the use of flow control, such
as PFC. Even worse, large queues interact poorly with congestion
feedback; when flows are transmitting at the fair-share rate, ECN [3]
or delay-based [38, 41] schemes will signal congestion to some
flows, resulting in significant unfairness.
Bounded queue build-up: To overcome the fundamental limitation,
ExpressPass uses credit-based scheduling in which a sender trans-
mits a data packet only after receiving a credit from the receiver.
When a credit packet reaches a sender, the sender transmits a data
packet if it has one to send; otherwise, the credit packet is ignored.
ExpressPass controls congestion by rate-limiting the credit packets
at the switch but without introducing per-flow state. This effectively

1Even a deep buffer Arista 7280R switch provides 15% less buffer per Gbps in their
100 Gbps switches compared to that in 10 Gbps switches [9].
2Note multiple workers can share the same host, when the number of workers exceeds
the number of hosts.
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Figure 3: ExpressPass Overview
schedules the response packets in the bottleneck link at packet gran-
ularity and thus bounds the queue build-up, without relying on a
centralized controller [47]. To demonstrate this, we simulate the
same partition/aggregate workload using our credit-based scheme.
Figure 1 (c) shows the queue build-up. It shows regardless of the
fan-out, the maximum queue build-up is bounded.

In a credit-based scheme, the queue only builds up when flows
have different round-trip times. Two factors can contribute to RTT
differences: 1) the difference in path lengths and 2) the variance
in packet processing time at the host. In datacenter environments,
both can be bounded. The difference in path lengths is bounded by
the network topology. For example, a 3-layered fat tree topology
has minimum round-trip path length 4 and maximum 12 between
any two pairs of hosts. Note the difference is strictly less than the
maximum RTT between any pair of hosts.

The variance in credit processing time can also be bounded. A
host discards credit when it does not have any data to send, thus
the variance comes only from that of the credit processing delay
(e.g., interrupt or DMA latency in a software implementation). In
our software implementation on SoftNIC [31], it varies between 0.9
and 6.2 µs (99.99th percentile). Our simulation result in Figure 1
(b) accounts for this variance. The red line shows the maximum
queue required considering the two delay factors. Note, a hardware
implementation on a NIC can further reduce the variance in credit
processing times.
Fast convergence: Another critical challenge for traditional conges-
tion control is quickly ramping up to the fair-share. Fast ramp-up
is at odds with low buffer occupancy and risks buffer overflow and
packet drops. Thus, in traditional congestion control, it is often a
slow, conservative process, which significantly increases the flow
completion time. In contrast, credit drop is not as detrimental as data
drop, which allows us to send credit packets more aggressively. To
demonstrate its potential, we implement a naïve credit-based scheme
where a receiver sends credits at its maximum rate. At the bottle-
neck link, the switch drops excess credit packets using rate-limiting.
We use a Pica8 P-3780 10GbE switch to configure rate-limiting on
credit packets. Figure 2 shows the convergence characteristics of a
naïve credit-based scheme compared to TCP cubic and DCTCP. It
shows the credit-based design can converge to fairness in just one
round-trip time, significantly outperforming the TCP variants.
Small RTT and sub-packet regime [16]: Finally, datacenter net-
works have a small base RTTs around tens of microseconds. Low la-
tency cut-through switches even achieve sub-microsecond latency [8].
Small RTT coupled with a large number of concurrent flows means
each flow may send less than one packet per RTT on average [14]—
even at 100Gbps (10Gbps), 416 (42) flows are enough to reach this
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Figure 4: Problems with naïve credit-based approach
point assuming 50 µs RTT. In this regime, window-based protocols
break down [14, 16, 32]. Rate-based protocols can increase the prob-
ing interval to multiples of RTTs, but this comes at a cost because the
ramp-up time also increases significantly. Fundamentally, supporting
a high dynamic range of flows efficiently requires a cost-effective
mechanism for bandwidth probing. The credit-based approach opens
up a new design space in this regard.

3 EXPRESSPASS DESIGN
In ExpressPass, credit packets are sent end-to-end on a per-flow
basis. Each switch and the host NIC rate-limit credit packets on
a per-link basis to ensure that the returning flow of data does not
exceed the link capacity. Symmetric routing ensures data packets
follow the reverse path of credit flows (see Section 3.1 for details).

Intuitively, our end-to-end credit-based scheme “schedules” the
arrival of data packets at packet granularity, in addition to controlling
their arrival rate at the bottleneck link. To show how this mechanism
works, we illustrate a simple scenario with two flows in Figure 3,
where all links have equal capacity. Consider a time window in
which only two packets can be transmitted on the link. Now, receiver
RA and RB generate credits (A1, A2) and (B1, B2) respectively at
the maximum credit rate. All four credit packets arrive at output port
O , where credit packets are rate-limited to match the capacity of the
reverse link capacity. Thus, half the credits are dropped at the output
port. In this example, each sender gets one credit and sends one data
packet back to the receivers. Note, the senders generate exactly two
data packets that can go through the bottleneck link during the time
window. In addition, in an ideal case where the RTTs of the two
flows are the same, the data packets do not experience any queuing
because their arrival at the bottleneck link is well-scheduled.
Design challenges: While the credit-based design shows promising
outlook, it is not without its own challenges. One might think that
with the credit-based scheme a naïve approach in which a receiver
sends credit packets as fast as possible can achieve fast convergence,
high utilization, and fairness all at the same time. However, the naïve
approach has serious problems with multiple bottlenecks. First, it
does not offer fairness. Consider the multi-bottleneck topology of
Figure 4 (a). When all flows send credit packets at the maximum
rate, the second switch (from the left) will receive twice as many
credit packets for Flow 0 than Flow 1 and Flow 2. As a result, Flow 0
occupies twice as much bandwidth on Link 2 than others. Second,
multi-bottlenecks may lead to low link utilization. Consider the
parking lot topology of Figure 4 (b). When credit packets are sent at
full speed, link 1’s utilization drops to 83.3%. This is because, after
50% of Flow 0’s credit passing link 1 (when competing with Flow 1),
only 33.3% of credit packets go through Link 2, leaving the reverse
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path of Link 1 under-utilized by 16.6%. Finally, in large networks,
the RTTs of different paths may differ significantly. This may break
the scheduling of data packets, which leads to a queue build-up.

Achieving high utilization, fairness, and fast convergence at the
same time is non-trivial and requires careful design of a credit feed-
back loop. In addition, we must limit the queue build-up to ensure
zero data loss. Next, we present the design details and how the
end-hosts and switches work together to realize the goals.

3.1 Switch and End-Host Design
Credit rate-limiting (switch and host NIC): For credit packets, we
use a minimum size, 84B Ethernet frame, including the preamble and
inter-packet gap. Each credit packet triggers a sender to transmit up
to a maximum size Ethernet frame (e.g., 1538B). Thus, in Ethernet,
the credit is rate-limited to 84/(84 + 1538) ≈ 5% of the link capacity,
and the remaining 95% is used for transmitting data packets. The
host and switch perform credit rate-limiting at each switch port. The
host also tags credit packets so that switches can classify them and
apply rate-limiting on a separate queue. To pace credit packets and
limit their maximum burst size, we apply a leaky bucket available on
commodity switch chipsets (e.g., maximum bandwidth metering on
Broadcom chipsets). At peak credit-sending rate, credits are spaced
apart by exactly 1 MTU in time (last byte to the first byte). Because
data packets are not always the full MTU in size, two or more data
packets can be transmitted back to back, and by the time a credit is
sent there may be additional tokens accumulated for a fraction of
a credit packet. Increasing the token bucket to the size of 2 credit
packets ensures these fractional amounts are not discarded so that
credit sending rate becomes nearly the maximum on average.

Finally, to limit the credit queue, we apply buffer carving [19] to
assign a fixed buffer of four to eight credit packets to the class of
credit packets.
Ensuring path symmetry (switch): Our mechanism requires path
symmetry—data packet must follow the reverse path of the corre-
sponding credit packet. Datacenter networks with multiple paths
(e.g., Clos networks) often utilize equal-cost multiple paths. In this
case, two adjacent switches need to hash the credit and data pack-
ets of the same flow onto the same link (in different directions)
for symmetric routing. This can be done, in commodity switches,
by using symmetric hashing with deterministic Equal Cost Multi-
Path (ECMP) forwarding. Symmetric hashing provides the same
hash value for bi-directional flows [15, 17, 45], and deterministic
ECMP sorts next-hop entries in the same order (e.g., by the next
hop addresses) on different switches [21, 51]. Finally, it requires
a mechanism to exclude links that fail unidirectionally [52]. Note
path symmetry does not affect performance. Even with DCTCP, the
utilization and performance on fat tree topology are not affected by
path symmetry in our simulations.
Ensuring zero data loss (switch): Rate-limiting credit packets con-
trols the rate of data in the reverse path and makes the network
congestion-free. However, the difference in RTT can cause tran-
sient queue build-up. Fortunately, the maximum queue build-up is
bounded in ExpressPass. We apply network calculus [37] to deter-
mine the bound. Note this bound is equivalent to the buffer require-
ment to ensure zero-data loss.

Topology (link/core-link speed) ToR down ToR up Core
(Core/Aggr./ToR/Server) (norm. by DCTCP K)

32-ary fat tree (10/40 Gbps) 577.3 KB 19.0 KB 131.1 KB
(16 / 512 / 512 / 8,192) (5.77) (0.19) (0.33)

32-ary fat tree (40/100 Gbps) 1.06 MB 37.2 KB 221.8 KB
(16 / 512 / 512 / 8,192) (2.65) (0.09) (0.22)
3-tier Clos (10/40 Gbps) 577.3 KB 19.0 KB 131.1 KB
(16 / 128 / 1024 / 8,192) (5.77) (0.19) (0.33)
3-tier Clos (40/100 Gbps) 1.06 MB 37.2 KB 221.8 KB
(16 / 128 / 1024 / 8,192) (2.65) (0.09) (0.22)

Table 1: Required buffer size for ToR down ports, ToR up ports,
and Core ports with datacenter topology.

Given a network topology, we calculate the bound for each switch
port. Let us denote dp as the delay between receiving a credit packet
and observing the corresponding data packet at a switch port p, and
∆dp as the delay spread of dp (i.e., the difference between maximum
and minimum of dp ). ∆dp is determined by the network topology and
the queuing capacity of the network. ∆dp represents the maximum
duration of data buffering required to experience zero loss because,
in the worst case, ∆dp time unit worth of data can arrive at the same
time at port p. For a given credit ingress port p, its delay, dp , consists
of four factors: (1) the delay caused by the credit queue, dcredit ; (2)
the switching, transmission, and propagation delay of credit and data
packet to/from ingress port q of the next hop, t (p,q); (3) the delay
at ingress port q of the next hop, dq ; and (4) returning data packet’s
queuing delay at port q, ddata (q) whose maximum is determined by
∆dq .

dp = dcredit + t (p,q) + dq + ddata (q)

Then, given an ingress port p and its set of possible next-hop ingress
ports N (p), its delay spread ∆dp becomes:

∆dp =max(dcredit ) + max
q∈N (p )

(t (p,q) + dq + ∆dq )

− min
q∈N (p )

(t (p,q) + dq ),
(1)

In datacenters, switches are often constructed hierarchically (e.g.,
ToR, aggregator, and core switches). Within a hierarchical structure,
the delays can be computed in an iterative fashion. For example, if
we know the min/max delay of NIC ports, we can get the min/max
delay and the delay spread for uplink ports in a ToR switch. At
NIC, ∆dp is the same as the delay spread of host processing delay,
∆dhost , which is a constant given a host implementation. We can
then compute the min/max delay and the delay spread for uplink
ports in ToR and aggregator switches.

The delay spread accumulates along the path. In hierarchical
multi-rooted tree topologies, traffic from a downlink is forwarded
both up and down, but traffic from an uplink is only forwarded
down. Therefore, for uplink ports, the set of next hop’s ingress ports
N (p) only includes the switch/NIC ports at lower layers, whereas
for downlink ports N (p) includes ports at both lower and upper
layers. As a result, uplink ports require smaller buffer than downlink
ports. ToR downlink has the largest path length variance, thus has
the largest buffer requirement.

Table 1 shows the buffer per port requirement for different topolo-
gies. We assume a credit queue capacity of 8 credit packets (see
Section 3.2) and propagation delay of 5 µs for core links and 1 µs for
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others. For the host processing delay spread, we use the measure-
ment result from our testbed (shown in Figure 14 (a)). To compare
buffer requirement of ExpressPass to DCTCP, we also show the
value normalized to DCTCP’s ECN marking threshold K as recom-
mended in the DCTCP paper [3]. Note, for ExpressPass, the result
shows the buffer requirement for operating the network without any
data packet loss, whereas DCTCP’s marking threshold represents the
average queue size for DCTCP. The maximum buffer requirement
is a very conservative bound assuming the worst case. It is required
when a part network that has the longest delay has a full (credit and
data) buffer, while the path with the shortest delay has zero buffer.
This is an unlikely event that only happens in a network with signifi-
cant load imbalance. Under realistic workloads, ExpressPass uses
only a fraction of the data queue as we show in Section 6. Finally,
ExpressPass’s correct operation does not depend on zero loss of data
packets (i.e., it operates even with smaller buffers).

Three main factors impact the required buffer size for zero data
loss: delay spread of host processing, credit buffer size, and link
speed. Figure 5 shows the breakdown of maximum buffer for a
ToR switch by the each contributing source in 32-ary fat tree (8, 192
hosts) topologies with (10/40), (40/100), and (100/100) Gbps (link/-
core link) speeds. We use two sets of parameters: a) 8 credit queue
and ∆dhost = 5.1 µs reflect our testbed setting; b) 4 credit queue and
∆dhost = 1 µs represent a case where ExpressPass is implemented in
NIC hardware. Smaller credit queue capacity and host delay spread
results in a smaller data queue. The required buffer space for zero-
loss increases sub-linearly with the link capacity. Note, a ToR switch
has the largest buffer requirement among all. Even then, its require-
ment is modest in all cases. Today shallow buffered 10GbE switches
have 9 to 16MB of shared packet buffers and 100GbE switches have
16MB to 256MB [10, 54], whereas deep buffered switches have up
to 24GB of shared packet buffer [54].
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Ensuring fair credit drop (end-host): ExpressPass relies on the
uniform random dropping of credit packets at the switch to achieve
fairness—if n flows are sending credits at the same rate to the shared
bottleneck, equal fraction of credit packets must be dropped from
each flow. Unfortunately, subtle timing issue can easily result in a
skewed credit drop with drop-tail queues. When the credit buffer
is (nearly) full, the order of credit packet arrival determines which
ones get dropped. Thus, synchronized arrival can result in significant
unfairness. It is particularly important because we use a tiny credit
buffer (see Section 3.2).

To address this issue, we introduce random jitter in sending credit
packets at the end-host, instead of perfectly pacing them. To deter-
mine how much jitter is required for fairness, we create a number
of concurrent flows (between 1 and 1024) that traverse a single bot-
tleneck link. We vary the jitter level, j, from 0.01 to 0.08 relative to
the inter-credit gap (e.g., the jitter is between 13ns and 104ns for
10GbE) and measure the Jain’s fairness index [33] over an interval
of 1ms. Figure 6 (a) shows the result. We observe that perfect pacing
causes significant unfairness due to exact ordering (fairness index
of 1.0 means perfect fairness). However, even small jitter (tens of
nanosecond) is enough to achieve good fairness as it breaks synchro-
nization. We also find, in our prototype implementation, the natural
jitter at the host and NIC is sufficient enough to achieve fairness.
Figure 6 (b) plots the CDF of inter-credit gap measured using an In-
tel X520 10GbE NIC, when credit packets are sent at the maximum
credit rate with pacing performed in SoftNIC. The inter-credit gap
has a standard deviation of 772.52ns, which provides a sufficient
degree of randomization.

However, synchronized credit drop can also arise when credits
from multiple switches compete for a single bottleneck. The jitter at
the end host is not sufficient when the credit queues at the switches
are not drained for a long period of time. In large scale simulations,
we observe that some flows experience excessive credit drop while
other flows make progress. To ensure fairness across switches, we
randomize the credit packet sizes from 84B to 92B. This effectively
creates jitter at the switches and breaks synchronization. With these
mechanisms, ExpressPass provides fair credit drop across flows
without any per-flow state or queues at the switches.
Starting and stopping credit flow (end-host): Finally, Express-
Pass requires a signaling mechanism to start the credit flow at the
receiver. For TCP, we piggyback credit request to either SYN and/or
SYN+ACK packet depending on data availability. This allows data
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Algorithm 1 Credit Feedback Control at Receiver.
1: w ← winit
2: cur_rate← initial_rate
3: repeat per update period (RTT by default)
4: credit_loss = #_credit_dropped/#_credit_sent
5: if credit_loss ≤ target_loss then
6: (increasing phase)
7: if previous phase was increasing phase then
8: w = (w +wmax )/2 (wmax = 0.5)
9: cur_rate = (1 −w ) · cur_rate

+w · max_rate · (1 + target_loss)
10: else
11: (decreasing phase)
12: cur_rate = cur_rate · (1 − credit_loss) · (1 + target_loss)
13: w = max (w/2,wmin ) (0 < wmin ≤ wmax )

14: until End of flow

transmission to start immediately after the 3-way handshake. For
persistent connections or UDP, we send credit requests in a mini-
mum sized packet, but this adds a delay of an RTT. At the end of
the flow, if there is no data to send for a small timeout period, the
sender transmits a CREDIT_STOP to the receiver, and the receiver
stops sending credits after receiving it 3. Figure 7 depicts the state
transition diagram.

3.2 Credit Feedback Control
Fast convergence, utilization, and fairness present challenging trade-
offs in congestion control. In our credit-based scheme, considering
only one (e.g., fast convergence) results in an undesirable outcome
as shown in Section 2. To address this, we introduce a credit feed-
back loop where credit sending rate is dynamically adjusted. Our
feedback loop strives to achieve high utilization, fairness, and fast
convergence.

One question is: how does it differ from existing data packet
feedback control? We first illustrate two key differences and describe
the feedback design.

First, in the credit-based scheme, one can ramp up a flow’s credit
sending rate much more aggressively because ramping up the credit
sending rate does not result in data loss. In traditional design, ramp-
ing up the flow rate had to be done carefully in a conservative fashion
because it might introduce data loss, which greatly increases the flow
completion time due to retransmission. Our algorithm leverages ag-
gressive ramp-up of credit sending rate to achieve fast convergence.

Second, we fully leverage the fact that the cost of overshooting the
credit sending rate is low. At steady state, overshoot targets a small
credit loss rate (e.g., 10%). This allows ExpressPass to instantly
detect and fill up additional available bandwidth when bottleneck
link starts to free up, which achieves high utilization.
Feedback control algorithm: At a high-level, our feedback algo-
rithm uses binary increase, similar to BIC-TCP [56], with the target
rate set to the link capacity. The aggressive increase ensures fast
convergence. Fairness is achieved because the flow with lower rate
increases its rate more than the competing flow with the higher rate.

3This cause some credits to be wasted. We quantify the overhead and discuss mitigation
strategies in Section 7.
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Figure 8: Convergence time and credit waste trade-offs.

However, the aggressive binary increase does not converge and re-
sults in oscillation. To improve the stability, we dynamically adjust
the aggressiveness factor, w .

ExpressPass uses the credit loss rate as the congestion indicator.
For credit loss rate measurement, each credit packet carries a se-
quence number, and the data packet echoes back the credit sequence
number. A gap in the sequence number indicates credit packets have
been dropped in the network. When congestion is detected, Express-
Pass reduces the credit sending rate to the credit rates that passed
through the bottleneck during the last RTT period.

Algorithm 1 describes the credit feedback control. If credit_loss
is less than or equal to the target loss rate (target_loss), the feedback
control concludes that the network is under-utilized and goes through
the increasing phase (line 6 to 9). It increases cur_rate by computing
a weighted average of cur_rate and max_rate·(1+ target_loss) using
an aggressiveness factor w (0 < w ≤ 0.5) as the weight, where
max_rate indicates the maximum credit rate for the link. Otherwise
(i.e., when credit_loss > target_loss), the feedback control detects
congestion and goes through the decreasing phase, where it reduces
the credit sending rate (cur_rate) so that the credit loss rate will
match its target loss rate at the next update period assuming all flows
adjust in the same manner.

The feedback loop dynamically adjusts the aggressiveness factor
w (between wmin and wmax or 0.5) to provide a balance between
stability and fast convergence. When w is large (small), the credit
sending rate ramps up more (less) aggressively. Thus, when con-
gestion is detected, we halve w in the decrease phase. When no
congestion is detected for two update periods, we increase w by
averaging its current value and the maximum value, 0.5. At steady
state, a flow experiences increase and decrease phase alternatively,
and as a result, w decreases exponentially. This achieves stability as
we show in Section 4. Finally, wmin provides a lower bound, which
keepsw from becoming infinitesimally small. In all our experiments,
we use wmin of 0.01. Setting wmin involves in a trade-off between
a better steady state behavior and fast convergence, as we show
through analysis in Section 4.

3.3 Parameter choices
Initial rate and winit determine how aggressively a flow starts. They
decide the trade-off between small flow FCT and credit waste.
Setting them high allows flows to use as much bandwidth as possible
from the beginning. However, a flow with only a single packet to
send will waste all-but-one credits in the first RTT. Setting them
low reduces the credit waste, but increases the convergence time
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(or ramp-up time). To understand the trade-offs, we measure the
convergence time of a new flow competing with an existing flow by
varying the initial rate from 1

32 ×max_rate tomax_rate whilewinit
is fixed to 0.5. Figure 8 (a) shows that as the initial rate decreases,
the convergence time increases from 2RTTs to 14RTTs. Figure 8
(b) shows the amount of credit waste with single packet flows in
an idle network whose RTT is 100 µs. As the initial rate decreases,
the amount of wasted credits decline as expected. Note that winit
does not affect the credit waste for a single packet flow. We further
analyze the trade-offs with realistic workloads later in Section 6.3.
Target loss: One important role of the target loss factor is to compen-
sate for subtle timing mismatch. For example, a receiver could send
N credits over prior RTT and only receives N-1 data packets due to
subtle timing mismatch, but we do not want our feedback control
to overreact to such cases. While targeting some loss may appear
to introduce more credit waste, it usually does not because credits
delivered to the sender will be used if data is available. However,
with multiple bottlenecks, setting the target loss rate higher risks
under-utilization. Thus, we use a small target loss rate of 10%.
Credit queue capacity: The size of the credit buffer affects utiliza-
tion, convergence time, and data queue occupancy. A large credit
buffer hurts fast convergence as it delays feedback and increases the
delay spread and queue occupancy for data packets. However, too
small credit buffer can hurt utilization because credit packets can
arrive in bursts across different ports and get dropped. We quantify
how much credit queue is necessary to ensure high utilization. For
this, we conduct an experiment with our feedback control while vary-
ing the number of flows from 2 to 32 which all arrive from different
physical ports and depart through the same port. We then vary the
credit queue size from 1 to 32 packets in power of 2 and measure
the corresponding under-utilization in Figure 9. It shows that credit
buffer size of eight is sufficient across the different number of flows.
Hence, we set the credit buffer to eight for rest of the paper.
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3.4 Effect of feedback control
The feedback loop significantly improves utilization with multiple
bottlenecks by reducing wasted credits for long flows when flows
traverse multiple hops. Here, we quantify this using the topology of
Figure 10 (a). We increase the number of bottleneck links, N , from
one to six. Figure 10 (b) shows the utilization of the link with the
lowest utilization. To isolate the loss due to multiple bottlenecks, we
report the utilization normalized to the maximum data rate excluding
the credit packets. Our feedback control achieves high utilization
even with multiple bottlenecks. With two bottlenecks, it achieves
98.0% utilization, an improvement from 83.3% the naïve case with-
out feedback control; and with six bottlenecks, it achieves 97.8%
utilization, an improvement from 60% in the naïve case.

Our feedback control also improves fairness with multiple bot-
tlenecks. To demonstrate this, we use the multi-bottleneck scenario
in Figure 11 (a) and vary the number of flows (N) that use Link 1.
We then measure the throughput of Flow 0. Note, all flows are long-
running flows and Flow 1 through N experience multiple bottlenecks
but Flow 0 only has a single bottleneck. Figure 11 (b) shows the
throughput of Flow 0 as the number of competing flows increases.
With ideal max-min fairness, Flow 0 should get 1/(N+1) of the link
capacity (red line in Figure 11 (b)). ExpressPass follows the max-min
fair-share closely until four flows. But, as the number of flows in-
creases, it shows a small gap. There are many factors that contribute
to fairness. One important factor is when there is less than one credit
packets per RTT. ExpressPass can still achieve good utilization and
bounded queue, but fairness deteriorates in such cases.

4 ANALYSIS OF EXPRESSPASS
We now provide analysis of our feedback control. We prove that it
converges to fair-share and analyze stability using a discrete model.
For analysis, we assume N (> 1) flows are sharing a single bottleneck
link and their update periods are synchronized as in many other
studies [4, 46, 59].
Stability analysis: Let us denote the credit sending rate of flow n
at time t by Rn (t ), and its aggressiveness factor w by wn (t ). The
maximum credit sending rate corresponding to the link capacity is de-
noted asmax_rate. We defineC asC = max_rate · (1+ target_loss),
which is the maximum credit sending rate for a flow.

Without loss of generality, assume the bottleneck link is under-
utilized. Then, credit_loss will be zero for all flows, and they will
increase their credit sending rates. Eventually, the aggregate credit
sending rate (

∑N
i=1 Ri (t )) will exceed the maximum credit sending

rate,C. In the next update period t = t0 , it will reachC according to
the decreasing phase (Algorithm 1 line 12) that reduces cur_rate by
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(1− credit_loss) · (1+ target_loss). At time t0 + 1, increasing phase
of feedback control is triggered, and the aggregate credit sending
rate becomes:

N∑
i=1

Ri (t0 + 1) =
N∑
i=1
{(1 −wi (t0 + 1)) · Ri (t0) +wi (t0 + 1)C }

>

N∑
i=1
{(1 −wmin ) · Ri (t0) +wminC } > C

(2)

The aggregate credit sending rate now exceeds C. Then, at t0 + 2,
it becomes C again. From the time t0, all flows will experience
increasing phase and decreasing phase alternatively. Thus, we get
the following equations from algorithm 1 line 12 and 9:

Rn (t0 + 1) =(1 −wn (t0))Rn (t0) +wn (t0)C

Rn (t0 + 2) =
C∑N

i=1 Ri (t0 + 1)
Rn (t0 + 1)

=
(1 −wn (t0))Rn (t0) +wn (t0)C

1 − 1
C
∑N
i=1wi (t0)Ri (t0) +

∑N
i=1wi (t0)

=
1

A(t0)
{(1 −wn (t0))Rn (t0) +wn (t0)C }

A(t0) := 1 +
N∑
i=1

wi (t0){1 −
Ri (t0)

C
}

Solving the recurrence equations yields (for k > 0):

Rn (t0 + 2k ) ≈A−k (t0) (1 −wn (t0))k · Rn (t0)

+
wn (t0) ·C

A(t0) − (1 −wn (t0))

(3)

Rn (t0 + 2k + 1) ≈(1 −wn (t0 + 2k )) · Rn (t0 + 2k )
+wn (t0 + 2k ) ·C

(4)

The aggressiveness factor wn (t ) halves every two update periods
and eventually it converges to wmin (Algorithm 1 line 8, 11-12).

wn (t + 1) = wn (t ), wn (t + 2) = max(
1
2
wn (t ),wmin )

Let us denote the time when wn (t ) have converged to wmin by tc ;
wn (tc + n) = wmin . Equation 3 and 4 still hold at tc :

Rn (tc + 2k ) =A−k (tc ) (1 −wmin )
k · Rn (tc ) +

C
N

Rn (tc + 2k + 1) = (1 −wmin )Rn (tc + 2k ) +wminC

Because 0 < wmin ≤ wn (t0) ≤ 0.5, N > 1 and C > 0, A(t0) > 1
and 0.5 ≤ (1 −wmin ) < 1. Thus, we get:

Rn (tc + 2k ) →
C
N

(5)

Rn (tc + 2k + 1) →
C
N

(1 + (N − 1)wmin ) (6)

We have shown that regardless of the initial credit sending rate
and the initial aggressiveness factor wn , Rn (t + 2k ) converges to
C/N and Rn (t + 2k + 1) is bounded. Thus, our feedback control is
stable. Below, we also show the difference between Rn (t + 2k ) and
Rn (t + 2k + 1) is bounded.
Convergence to fairness: Now, we show the bandwidth allocation
Bn converges to fairness. From Equations 5 and 6, we see that all
flows have the same credit sending rate. Therefore, the bandwidth
allocation converges to fairness.

Figure 12 illustrates the convergence behavior. Let’s denote the
fair-share rate of a flow as R∗ (= C

N ). Let us denote the difference of
credit sending rate at time t and time t − 1 as D (t ). It follows that:

D (t0 + 2k + 1) = |Rn (t0 + 2k + 1) − Rn (t0 + 2k ) |

≈ |max (2−kwn (t0), wmin ) · {C − Rn (t0 + 2k ) } |

Similarly, we can compute D (t0 + 2k + 2). D (t ) is an exponentially
decreasing function that eventually converges to:

D∗ = C ·wmin (1 −
1
N
)

NoteC = max_rate · (1+ target_loss). Thus, D∗ depends onwmin
and target_loss; a small wmin and target_loss results in a small D∗

value, which improves the steady state behavior. However, a small
wmin can cause delayed convergence by making (1 −wmin ) larger
in Equation 4.

5 IMPLEMENTATION
We leverage SoftNIC [31] to implement ExpressPass. SoftNIC is a
framework that allows developers to extend NIC functionality by
exploiting high-performance kernel bypass I/O framework (DPDK).
SoftNIC enables us to pace credits with microseconds level ac-
curacy and react to the credit packets with a small delay of few
microseconds. SoftNIC also enables legacy applications and kernel
networking stacks to be used without modification. Applications run
transparently on top of SoftNIC using TCP/IP. We implement Ex-
pressPass as a module inside SoftNIC. ExpressPass module adjusts
the credit sending rate according to the feedback algorithm and paces
the transmission of credit packets. Data packets are sent only when
the ExpressPass module receives a credit packet. To start and stop
the transmission of credit packets, we implement the per-flow state
machine in Figure 7. For example, when the NIC receives data to
transmit from the kernel, it generates credit requests. Upon reception
of a credit packet, it offers a data packet if available.

For rate-limiting credit packets, we leverage the scalable rate
limiter implementation of SoftNIC. It is able to handle thousands
of concurrent flows while introducing only a few microseconds of
jitter [31]. For rate-limiting in the switch, we leverage maximum
bandwidth metering available in Broadcom chipsets. We create sep-
arate per-port queues for credits. Then, we set the maximum burst
size as 2 credits and the queue occupancy as 8 credit packets.
Credit processing and rate-limiting: To validate our implementa-
tion and setup, we measure 1) the host credit processing time of
our implementation and 2) the accuracy of credit rate-limiting at the
switch. We connect two hosts using a ToR switch (Quanta T3048-
LY2). Figure 14 (a) shows the CDF of credit processing latency.
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Figure 14: Host and switch performance (Testbed)

The median is about 0.38 µs, but 99.99th percentile is large at 6.2 µs.
We believe a hardware implementation will have a much smaller
variance, reducing the buffer requirement for ExpressPass. RDMA
NICs implementing iWARP exhibit a maximum delay spread (jitter)
of 1.2 µs [18]. In addition, all the core components of ExpressPass,
including pacers [5], rate-limiters [48, 49, 58], and credit-based flow
control, have been implemented on NIC. Figure 14 (b) shows the
inter-credit gap at transmission at the sender and reception at the
receiver. We timestamp credit packets at SoftNIC right before trans-
mission and right after the reception. We observe that the jitter of the
inter packet gap is relatively small (within 0.7 µs) which implies that
software implementation is efficient enough to generate and receive
credit packets at 10Gbps.
Convergence characteristics: To demonstrate ExpressPass works
end-to-end, we run a simple test with five flows that arrive and depart
over time. Figure 13 shows the throughput averaged over 10ms and
the queue size measured at the switch every 30ms. ExpressPass
achieves a much more stable steady state behavior and exhibits
a very small queue. The maximum ExpressPass data throughput
is 94.82% of the link capacity because 5.18% of the bandwidth is
reserved for credit. The maximum queue size observed was 18KB
for ExpressPass and 240.7KB for DCTCP. The maximum credit
queue size of ExpressPass was only 672B (8 packets).

6 EVALUATION
We evaluate three key aspects of ExpressPass using testbed experi-
ments (Section 6.1) and ns-2 simulations [39] (Section 6.1 - 6.3):
(1) We evaluate the flow scalability of ExpressPass in terms of

convergence speed, fairness, utilization, and queuing.
(2) We measure the effectiveness of ExpressPass under heavy incast.
(3) We quantify the benefits and the trade-offs of ExpressPass using

realistic datacenter workloads.
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Figure 15: Queue length / fairness / utilization with many con-
current flows

6.1 Microbenchmark
In this section, using simple synthetic microbenchmark we verify
whether ExpressPass behaves as designed, quantify its benefits, and
compare it against the DCTCP [3] and the RCP [23].
Flow scalability: Flow scalability is an important problem because
datacenters have very small BDP on the order of 100 packets. Yet,
it needs to support various scale-out workloads that generate thou-
sands of concurrent connections [25]. To test the flow scalability of
ExpressPass, we run a simple experiment using a dumbbell topology
where N pairs of sender and receiver share the same bottleneck link.
We vary the number of flows from 4 to 256 (testbed) and 1024 (ns-2),
and measure utilization, fairness and queuing. Note, these flows are
long running flows whose arrival times are not synchronized. We
experiment with both testbed and simulation for cross-validation.
For testbed experiments, we use 12 machines to generate traffic,
where each sender may generate more than one flow.

First, we measure the utilization. ExpressPass achieves approxi-
mately 95% of utilization due to the reserved bandwidth for credits.
DCTCP achieves 100% utilization in all cases. RCP has under-

utilization beyond 256 flows. In the testbed, DCTCP shows slightly
lower utilization when the number of flows is small. We suspect high
variation in kernel latency as the cause.

Second, we measure the fairness to evaluate how fairly bandwidth
is shared across flows. We compute the Jain’s fairness index using
the throughput of each flow at every 100ms interval and report the
average. With a large number of flows DCTCP’s fairness drops
significantly. Because DCTCP cannot handle a congestion window
of less than 1, some flows time out and eventually collapse. In
contrast, both ExpressPass and RCP achieve very good fairness.
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Figure 16: Convergence time of ExpressPass, DCTCP and RCP at 10/100 Gbps bottleneck link

Finally, Figure 15 (e) and (f) show the maximum queue occu-
pancy at the bottleneck as the number of flows increases. Express-
Pass shows maximum queuing of 10.5KB and 1.34KB in the testbed
and ns-2 respectively. In contrast, DCTCP’s max queue occupancy
increases with the number of flows. In our simulation, when the
maximum queue hits the queue capacity, packet drop occurs. The
experimental results show a similar trend. DCTCP’s congestion con-
trol starts to break around 64 flows. When the number of concurrent
flows is larger than 64, most flows stay at the minimum congestion
window of 2 because the queue size is always larger than the mark-
ing threshold. However, note the maximum queue length for 16 and
32flows are higher than that of 64flows. For 16 and 32flows, some
flows may occasionally ramp up when they do not get an ECN signal,
which builds up the queue. RCP exceeds the queue capacity and
packet drop occurs even with 32 flows. This is because RCP assigns
the same rate for a new flow as existing flows when new flows start.
Fast convergence: Figure 16 shows the convergence behavior of
ExpressPass, DCTCP, and RCP over time. First, we use testbed ex-
periments to compare ExpressPass and DCTCP at 10Gbps. Express-
Pass’s throughput is averaged over 25 µs and DCTCP is averaged
over 100ms due to its high throughput variance. As shown in Fig-
ure 16 (a) and (b), ExpressPass converges 700x faster than DCTCP in
just 100 µs (four RTTs), while DCTCP took 70ms to converge. Two
factors contribute to the difference. First, convergence is much faster
in ExpressPass than the DCTCP which performs AIMD. Second,
ExpressPass shows RTT of 10 µs at the minimum and 25 µs on aver-
age, measured in SoftNIC. On the other hand, DCTCP’s feedback
loop runs much slower in the Linux kernel, which adds hundreds of
microseconds RTT variation [38].

Next, we use simulation to compare the congestion feedback
algorithm of ExpressPass and DCTCP in isolation. We compare
the convergence time of ExpressPass and DCTCP on two different
link speeds (10Gbps and 100Gbps). The base RTT is set to 100 µs.
Figure 16 (c) - (f) shows the flows’ throughput for ExpressPass
and DCTCP at each RTT 4. ExpressPass converges within 3RTTs

4We set the DCTCP parameter K= 65, g= 0.0625 for 10Gbps link, and K= 650, g=
0.01976 for 100Gbps link. For ExpressPass, we report the average throughput for each
RTT. For DCTCP, we averaged over 10RTT due to its high variance.
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Figure 17: Shuffle workload (ns-2)

which is consistent with 4RTTs in experiments. DCTCP takes more
than 80 times longer than ExpressPass with 10Gbps link. As bot-
tleneck link capacity increases, the convergence time gap between
ExpressPass and DCTCP becomes larger. At 100Gbps, Express-
Pass’s convergence time remains unchanged, while that of DCTCP
grows linearly to the bottleneck link capacity. Because of DCTCP’s
additive increase behavior, its convergence time is proportional to
the bandwidth-delay product (BDP).

6.2 Heavy incast traffic pattern
One advantage of ExpressPass is robustness against incast traffic
patterns. Such traffic patterns commonly happen in the shuffle step
of MapReduce [20]. It creates an all-to-all traffic pattern, generating
incast towards each host running a task. We simulate 40 hosts con-
nected to single top-of-rack (ToR) switch via 10Gbps links using
ns-2. Each host runs 8 tasks, each of which sends 1MB to all other
tasks. Thus, each host sends and receives 2496 (39 × 8 × 8) flows.
Figure 17 shows the CDF of flow completion times (FCTs) with
DCTCP and ExpressPass. The median FCT of DCTCP is slightly
better (2.0 vs. 2.2 s). However, DCTCP has a much longer tail. At
99th percentile and tail, ExpressPass outperforms DCTCP by a fac-
tor of 1.51 and 6.65 respectively. With DCTCP, when some faster
flows complete, the remaining flows often catch up. However, at
the tail end, delayed flows tend to be toward a small set of hosts,
such that they cannot simply catch up by using all available band-
width. This drastically increases the tail latency and contributes to
the straggler problem in MapReduce [7]. Our example demonstrates
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0 - 10KB (S) 78% 49% 50% 63%
10KB - 100KB (M) 5% 3% 3% 18%
100KB - 1MB (L) 8% 18% 18% 19%
1MB - (XL) 9% 20% 29%

Average flow size 7.41MB 1.6MB 701KB 64KB

Table 2: Flow size distribution of realistic workload
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Figure 18: 99%-ile FCT of ExpressPass with different α and
winit (10Gbps, load 0.6)

congestion control can contribute to the problem, and ExpressPass
effectively alleviates this.

6.3 Performance under realistic workload
To evaluate the performance of ExpressPass in a more realistic
scenario, we run ns-2 simulations with four different workloads
shown in Table 2. It shows the flow size distribution and the average
flow size for each workload. We have chosen the workloads to cover
a wide range of average flow sizes ranging from 64 KB to 7.4 MB.
While the data mining workload has a smaller fraction of XL size
flows compared to web search, it has a larger cap of 1 GB compared
to 30 MB for web search, resulting in higher average flow sizes.
We generate 100 thousand flows with exponentially distributed inter-
arrival time. We simulate three target loads of 0.2, 0.4, and 0.6. There
is an over-subscription at the ToR uplinks and most of the traffic
traverses through the ToR up-links due to random peer selection.
Hence, we set the target load for ToR up-links.

We use a fat tree topology that consists of 8 core switches, 16
aggregator switches, 32 top-of-rack (ToR) switches, and 192 nodes.
The topology has an over-subscription ratio of 3:1 at ToR switch
layer. We create two networks, one with 10Gbps links and the other
with 40Gbps links. Maximum queue capacities are set to 384.5KB
(250MTUs) for the network with 10Gbps link and 1.54MB (1, 000
MTUs) for the network with 40Gbps. All network link delays are
set to 4 µs and host delays to 1 µs, which results in maximum RTT of
52 µs between nodes excluding queuing delay. To support multipath
routing, Equal Cost Multi Path (ECMP) routing is used.

We measure the flow completion time (FCT) and queue occu-
pancy of ExpressPass and compare them with RCP, DCTCP, DX,
and HULL. We set the parameters as recommended in their corre-
sponding papers.
Parameter sensitivity: The initial value of credit sending rate (α ×
max_rate) and aggressiveness factor (winit ) determine the early be-
havior as described in Section 3.2. To decide appropriate values,
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we run realistic workloads at target load of 0.6 with different α and
winit values. Figure 18 (a) and (b) shows the 99%-ile FCT values
for short (S) and large (L) flows respectively. As α and winit de-
crease, 99%-ile FCT of large flows decreases at the cost of increased
FCT for short flows. With α = winit = 1/16, large flow FCT de-
creases significantly, while short flow FCT increases less than 100%
compared to using α = winit = 1/2. Further reducing the values
provides an incremental gain in large flow FCT, but at a larger cost
in short flow FCT. α = winit = 1/16 provides a sweet spot, and we
use the setting in the rest of the experiments.
Flow Completion Time: We show the average and 99th percentile
FCTs across workloads for a target load of 0.6 in Figure 19. The
solid bar at the bottom indicates the average FCT and the upper
stripe bar shows the 99th percentile value. One clear pattern is that
ExpressPass performs better than others for short flows (S and M)
across workloads, and DCTCP and RCP perform better on large
flows (L and XL). ExpressPass achieves from 1.3x to 5.14x faster
average FCT compared to DCTCP for S and M flows, and the gap is
larger at 99th percentile. For L and XL size flows, its speed ranges
from 0.37x to 2.86x of DCTCP. This is expected given that two
dominant factors for short flow completion time are low queuing
and ramp up time which ExpressPass improves at the cost of lower
utilization. Between workloads, ExpressPass performs the worst for
Web Server workload relative to the others. This is due to the small
average flow size of 64KB causing more credit waste.
Credit Waste: To understand how much credit is wasted, we mea-
sure the ratio of credit waste from the sender. Figure 20 shows the
result broken down by the workload and the link speed. As the
average flow size becomes smaller, the wasted amount of credit in-
creases up to 60% in 40Gbps and 34% in 10Gbps in the Web Server
workload. Higher link speed also increases the wasted credits. This
explains why ExpressPass performs worse than DCTCP for large
flows in the Web Server workload. In general, the amount of wasted
credit is proportional to the bandwidth delay product (BDP) and
inversely proportional to the average flow size. In the worst case,
the receiver may send an entire BDP worth of credits to the sender
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and yet receive only one data packet. The figure also shows credit
waste with two different parameter settings to highlight this tradeoff.
Setting α to 1/16 reduces the amount of wasted credits significantly
to 31% and 19% for 40Gbps and 10Gbps link speed respectively.
Link speed scalability: Higher link speed enables flows to push
more bits per second but may require longer convergence time,
which diminishes the benefit of more bandwidth. To evaluate how
well ExpressPass performs, we measure the relative speed-up in FCT
when the link speed increases from 10 Gbps to 40 Gbps. Figure 21
shows the average FCT speed-up for the Web Server and Web Search
workloads. Data Mining and Cache Follower show similar results as
Web Search. For small flows, we observe less speed-up compared
to larger flows because RTT dominates the small flow FCT thus
increased bandwidth helps less. ExpressPass shows the largest gain
(1.5x - 3.5x) across all cases except large flows in Web Server work-
load. RCP has the largest gain in this case due to its aggressive ramp
up. It also maintains high utilization, whereas ExpressPass suffers
from increased credit waste when the BDP increases. DCTCP has
a 2.8x gain for the XL size flows and less than 2x gains for S, M,
and L size flows. DX and HULL benefit the least as they’re the
least aggressive scheme. Overall, this shows increasing benefit of
ExpressPass’s fast convergence and low queuing with the higher link
speed.
Queue length: Table 3 shows the average and maximum queue
occupancy observed during the simulation. On average, ExpressPass
uses less buffer than other congestion controls. ExpressPass’s max
queue is not proportional to the load whereas all other transports use
more queue with the increased load. ExpressPass’s queue bound is a
property of the topology, independent to the workload.

7 DISCUSSION AND LIMITATION
Path symmetry: To ensure path symmetry, we have used symmetric
routing. Symmetric routing can be achieved as evidenced by prior

Traffic
Type Load Express

Pass RCP DCTCP DX HULL Express
Pass RCP DCTCP DX HULL

0.2 0.14 2.34 0.46 0.56 0.62 30.76 375.3 86.63 15.38 15.46
0.4 0.32 2.78 0.99 0.62 0.67 29.31 375.3 131.6 22.00 26.15
0.6 0.41 5.46 2.79 0.77 0.84 20.75 375.3 157.1 42.09 77.63
0.2 0.07 3.19 0.88 0.56 0.62 34.00 375.3 153.8 10.77 29.22
0.4 0.27 10.54 2.85 0.65 0.71 41.78 375.3 178.3 23.45 23.24
0.6 0.50 14.58 6.18 0.77 0.82 32.30 375.3 214.7 39.30 79.28
0.2 0.08 3.27 1.84 0.57 0.63 40.16 375.3 253.8 12.40 38.45
0.4 0.29 12.19 4.77 0.66 0.71 49.30 375.3 296.8 20.18 26.15
0.6 0.54 18.01 8.65 0.79 0.84 30.93 375.3 343.9 37.76 74.05
0.2 0.06 2.31 2.58 0.61 0.58 38.45 375.3 386.0 9.32 49.22
0.4 0.12 4.78 5.92 0.60 0.69 40.66 375.3 375.3 17.39 49.22
0.6 0.47 5.78 9.33 0.64 0.67 46.14 375.3 357.0 19.99 53.83

Data
Mining

Web
Search

Web
Server

Average Queue (KB) Max Queue (KB)

Cache
Follower

Table 3: Average/maximum queue occupancy (ns-2) @ 10Gbps

work [27] and our simulation also uses symmetric routing on fat tree.
However, it incurs increased complexity to maintain consistent link
ordering with ECMP in the forward and reverse directions, especially
for handling link failures. Packet spraying [22] is a viable alternative
because it ensures all available paths get the equivalent load. We
believe the bounded queuing property of ExpressPass will also limit
the amount of packet reordering.
Presence of other traffic: In real datacenter networks, some traffic,
such as ARP packets and link layer control messages, may not be
able to send credits in advance. One solution to limit such traffic
and apply “reactive” control to account for it. When traffic is sent
without credit, we absorb them in the network queue and send credit
packets from the receiver, which will drain the queue.
Multiple traffic classes: Datacenter networks typically classify traf-
fic into multiple classes and apply prioritization to ensure the quality
of service. Existing schemes use multiple queues for data packets
and enforce priority or weighted fair-share across the queues. The
same logic can be applied to ExpressPass for credit packets instead
of data packets. For example, prioritizing flow A’s credits over flow
B’s credits while throttling the sum of credits from A and B will
result in the strict prioritization of A over B. Applying weighted
fair-share over multiple credit queues would have a similar effect.
Limitation of our feedback algorithm: The credit-based design
opens up a new design space for feedback control. We have explored
a single instance in this space, but our feedback algorithm leaves
much room for improvement.

Short flows cause credit packets to be wasted. This hurts the
flow completion times of long flows that compete with many short
flows. One way to overcome this is to use the approach of RC3 [42].
RC3 uses low priority data packet to quickly ramp up flows with-
out affecting other traffic. Similarly, in ExpressPass, one can allow
applications to send low priority data packets without credits. Such
low priority traffic would then be transmitted opportunistically to
compensate for the bandwidth lost due to wasted credits. However,
this approach comes at the cost of rather complex loss recovery logic
and requires careful design [42]. Credit waste can also be reduced if
the end of the flow can be reliably estimated in advance. Currently,
we assume senders do not know when the flow ends in advance.
However, it is possible for the sender to notify the end of the flow
in advance and send the credit stop request preemptively with some
margin. Some designs [1] even propose advertising send buffer to
the receiver. The sender can then leverage the information to control
the amount of credit waste.
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Another limitation is that our feedback currently assumes all
hosts have the same link capacity. We leverage this assumption in
our feedback design for faster convergence. However, when host link
speeds are different, the algorithm does not achieve fairness. One
could use other algorithms, such as CUBIC [29], to regain fairness
by trading-off the convergence time under such a setting, without
compromising bounded queuing.

8 RELATED WORK.
Credit-based flow control: Our approach is inspired by credit based
flow control [36] used in on-chip networks and high-speed system
interconnect such as Infiniband, PCIe, Intel QuickPath, or AMD
Hypertransport [53]. However, traditional credit-based flow control
is hop-by-hop, which requires switch support, and is difficult to scale
to datacenter size. Decongestion control and pFabric pioneered a
design where hosts transmit data aggressively and switches allocate
bandwidth. The difference is that we allocate bandwidth using credit.
Finally, TVA [57] uses a similar idea to rate-limit requests at the
router, but it is designed for DDoS prevention considering the size
of response rather than congestion control.
Low latency datacenter congestion control: DCQCN [58] and
TIMELY [41] are designed for datacenters that have RDMA traffic.
DCQCN uses ECN as congestion signal and QCN-like rate control.
The main goals of DCQCN alleviate the problems caused by PFC by
reducing its use while reducing ramp-up time. TIMELY uses delay as
feedback, similar to DX [38], but incorporates PFC to achieve zero
loss and lower the 99th percentile latency. PERC [34] proposes a
proactive approach to overcome the problems of reactive congestion
control. We believe ExpressPass presents an alternative approach
and shows promise in the high-speed environment (e.g., 100Gbps
networks).
Flow scheduling in datacenters: A large body of work focuses on
flow scheduling [6, 11, 26] in datacenter networks to minimize flow
completion times. Although the goals might overlap, flow scheduling
is largely orthogonal to congestion control. We believe congestion
control is a more fundamental mechanism for network resource allo-
cation. We also note that some flow scheduling schemes [43] have
been used in conjunction with congestion control to minimize the
flow completion times. pFabric treats the network as a single switch
and performs shortest job first scheduling assuming the flow size is
known in advance. This requires switch modifications. PIAS [11]
makes the approach more practical by approximating shortest-job-
first by implementing a multi-level feedback queue using priority
queuing in commodity switches and does not require knowledge of
individual flow size. pHost [26] shares the idea of using credit (token)
packets, but token packets in pHost are used for scheduling packet-
s/flows rather than congestion control. It assumes a congestion-free
network by using a network with full bisection bandwidth and packet
spraying. In addition, pHost does require knowledge of individual
flow size in advance.
Router-assisted congestion control: Some congestion control al-
gorithms require in-network support [24, 30, 35, 42]. These mecha-
nisms introduce a form of in-network feedback with which switches
explicitly participate in rate allocation of each flow. To reach fast
convergence, PERC [34] and FCP [30] employ mechanisms for end-
hosts to signal their bandwidth demand to the switches in the net-
work, which require changes in the switches. In ExpressPass, we use

credit packets to signal demand and merely use rate-limiting, which
does not require modification of the switches. Finally, RC3 [42] uses
in-network priority queues to fill up the available bandwidth in one
RTT. We believe this technique can be applied to credit packets to
achieve similar benefits, but leave it as future work.

9 CONCLUSION
In this work, we introduce ExpressPass, an end-to-end credit-based
congestion control. We use end-to-end credit transfer for bandwidth
allocation and fine-grained packet scheduling. We explore the key
benefits of a credit-based design and demonstrate it opens up a new
design space for more efficient congestion control. In particular,
the use of credit enables 1) low-cost bandwidth probing without
queue build-up and 2) scheduling the arrival of data packets at
packet granularity. We address key challenges in realizing a credit-
based congestion control and demonstrate it can be implemented
using commodity switches. By shaping the flow of credit packets at
the switch, ExpressPass effectively controls congestion even before
sending data packets. By achieving fast convergence, it drastically re-
duces the FCT for small flows. ExpressPass requires a small amount
of buffer. Our evaluation shows that ExpressPass (1) outperforms
other congestion control algorithms; (2) ensures high utilization and
fairness even with many concurrent flows; and (3) the benefits of
ExpressPass over other algorithms become even more favorable as
link speeds increase.
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