
This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16).
November 2–4, 2016 • Savannah, GA, USA

ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

NetBricks: Taking the V out of NFV
Aurojit Panda and Sangjin Han, University of California, Berkeley; Keon Jang, Google;

Melvin Walls and Sylvia Ratnasamy, University of California, Berkeley;
Scott Shenker, University of California, Berkeley, and International Computer Science Institute

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda

NetBricks: Taking the V out of NFV

Aurojit Panda† Sangjin Han† Keon Jang‡ Melvin Walls† Sylvia Ratnasamy† Scott Shenker†?

† UC Berkeley ‡ Google ? ICSI

Abstract
The move from hardware middleboxes to software network
functions, as advocated by NFV, has proven more challeng-
ing than expected. Developing new NFs remains a tedious
process, requiring that developers repeatedly rediscover
and reapply the same set of optimizations, while current
techniques for providing isolation between NFs (using
VMs or containers) incur high performance overheads. In
this paper we describe NetBricks, a new NFV framework
that tackles both these problems. For building NFs we take
inspiration from modern data analytics frameworks (e.g.,
Spark and Dryad) and build a small set of customizable net-
work processing elements. We also embrace type checking
and safe runtimes to provide isolation in software, rather
than rely on hardware isolation. NetBricks provides the
same memory isolation as containers and VMs, without
incurring the same performance penalties. To improve I/O
efficiency, we introduce a novel technique called zero-copy
software isolation.

1 Introduction
Networks today are responsible for more than just for-
warding packets, this additional functionality is imple-
mented using “middleboxes”. Middleboxes implement a
wide range of functionality, including security (e.g., fire-
walls, IDS/IPSs), performance (e.g., caches, WAN opti-
mizers) and support for new applications and protocols
(e.g., TLS proxies). Middlebox functionality was initially
provided by dedicated hardware devices, and is in wide de-
ployment today. A 2012 survey [44] found that in many net-
works there are equal numbers of middleboxes, switches
and routers.

Approximately four years ago, many large carriers ini-
tiated an effort, called Network Function Virtualization
(NFV), to replace hardware middleboxes with software
implementations running in VMs [10]. This approach en-
abled middlebox functionality (called Network Functions
or NFs) to be run on commodity servers and was supposed
to bring several advantages including: (a) simplifying de-
ployment, since deploying new functionality merely re-
quires software changes; (b) simpler management using

standard tools for managing VMs; (c) faster development,
which now requires writing software that runs on com-
modity hardware; and (d) reduced costs by consolidating
several NFs on a single machine. However, despite these
promised advances, there has been little progress towards
large-scale NF deployments. Our discussions with three
major carriers revealed that they are only just beginning
small scale test deployments (with 10-100s of customers)
using simple NFs e.g., firewalls and NATs.

The move from hardware middleboxes to software NFs
was supposed to speed innovation, so why has progress
been so slow? We believe this delay is because traditional
approaches for both building and running NFs are a poor
match for carrier networks, which have the following re-
quirements: performance, NF deployments should be able
to provide per-packet latencies on the order of 10s of µs,
and throughput on the order of 10s of Gbps; efficiency,
it should be possible to consolidate several NFs on a sin-
gle machine; support for chaining, since each packet is
typically processed by a sequence of NFs; the flexibility
to run NFs manufactured by multiple vendors; and the
ability to process packets from multiple tenants while pro-
viding some degree of isolation between them. Note that
because many carriers provide middlebox services to their
customers, the NFs supported by carriers include those that
are commonly found in enterprise environments (e.g., fire-
walls, NATs, IPS/IDSs, WAN optimizers, etc.) in addition
to ones specific to carriers (e.g., EPC, carrier-grade NAT).

Why do current tools for building and running NFs fall
short of these requirements? In terms of building NFs, tools
need to support both rapid-development (achieved through
the use of high-level abstractions) and high performance
(often requiring low-level optimizations). In other appli-
cation domains, programming frameworks and models
have been developed to allow developers to use high-level
abstractions while the framework optimizes the implemen-
tations of those abstractions (ensuring high performance);
the rise of data analytic frameworks (e.g., Hadoop, Spark)
is an example of this phenomenon. However, the state-of-
the-art for NFV is much more primitive. There are program-
ming models such as Click [27] that do not provide easily
customizable low-level optimizations, and libraries such as

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 203

DPDK [23] that only provide highly-optimized packet I/O
and low-level processing primitives (which alone is not suf-
ficient to implement real-world NFs), but no approach that
provides both high performance and rapid development.
The result is that today NFV developers typically spend
much time optimizing their code, which greatly slows de-
velopment time and increases the likelihood for bugs.

The current approaches for running NFs is also inade-
quate. Isolation between NF is critical: memory isolation
is essential for ensuring safety between NFs (which might
come from different vendors); and performance isolation
is essential to allow such deployments to serve multiple
customers. Currently, NFV deployments rely on VMs and
containers to provide isolation, but as we show in §5, they
incur substantial performance overheads for simple NFs.

To address these inadequacies in the current NFV
paradigm, we propose a very different approach for build-
ing and running NFs.1 Our approach, called NetBricks, is
clean-slate in that it requires rewriting NFs, but we do not
see this as a significant drawback given the relative lack of
progress towards NFV deployments. Our approach targets
deployments in large carrier networks, but applies to other
environments as well.

NetBricks provides both a programming model (for
building NFs) and an execution environment (for running
NFs). The programming model is built around a core set
of high-level but customizable abstractions for common
packet processing tasks; to demonstrate the generality of
these abstractions and the efficiency of their implemen-
tations, we reimplemented 5 existing NFs in NetBricks
and show that they perform well compared to their native
versions. Our execution environment relies on the use of
safe languages and runtimes for memory and fault isola-
tion (similar to existing systems we rely on scheduling
for performance isolation). Inter-process communication
is also important in NF deployments, and IPC in these
deployments must ensure that messages cannot be modi-
fied by an NF after being sent, a property we refer to as
packet isolation. Current systems copy packets to ensure
packet isolation, we instead use static check to provide this
property without copies. The resulting design, which we
call Zero-Copy Software Isolation (ZCSI), is the first to
achieve memory and packet isolation with no performance
penalty (in stark contrast to virtualization).

NetBricks is open source and is available at https:
//netbricks.io.

1Note that in addition to building and running NFs, one also has to
manage them. There are separate and active efforts on this topic (dis-
cussed in §6) in both research [12, 37] and industry [11, 30] that are
orthogonal to our concerns here.

2 Background and Motivation
In this section we provide a few more details on the prob-
lems with today’s approaches to NFV, and then give a
high-level description of how NetBricks resolves these
problems. As in much of this paper, we separate the task
of building NFs from the task of running them.

2.1 Building NFs
The vast majority of commercial NFs today make use of a
fast I/O library (DPDK, netmap, etc.). While this greatly
improves I/O performance, developers are responsible for
all other code optimizations. The Click modular router
(which can also make use of such libraries) enables de-
velopers to construct an NF by connecting together vari-
ous packet processing modules (called elements). While
Click does not limit how packets flow between elements,
modules typically support only limited amount of cus-
tomization through setting various parameters. Thus, when
implementing new NF functionality, developers commonly
need to implement new modules, and optimizing the perfor-
mance of such a module is difficult and time-consuming.

Our approach differs in two respects. First, we limit
the set of such modules to core functions such as packet
parsing, processing payloads, bytestream processing, and
the like. That is, rather than have developers deal with
a large set of modules – trying to determine which best
suit their needs in terms of optimization and generality –
NetBricks focuses on a core set with well-known semantics
and highly-optimized implementations.

Second, in order to provide the necessary generality, we
allow these core modules to be customized through the
use of User-Defined Functions (UDFs). This gives these
modules great flexibility, while allowing NetBricks to use
optimized implementations of these modules. We think this
approach represents a sweet-spot in the tradeoff between
flexibility and performance; yes, one can imagine NFs
that would not be easily supported by the set of modules
NetBricks provides, but all the common NFs we know of
fit comfortably within NetBricks’ range. NetBricks thus
gives developers the flexibility they need, and operators
the performance they want.

One can think of the relationship between Click and Net-
Bricks to be analogous to the difference between MPI and
Map Reduce. Both Click and MPI give developers a totally
general framework in which to build their applications, but
the developer must take on the task of optimizing the result-
ing code (unless they can reuse existing modules without
change). In contrast, NetBricks and Map Reduce support
only a more limited set of abstractions whose actions can
be customized through user code.

204 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://netbricks.io
https://netbricks.io

2.2 Running NFs
Current NFV deployments typically involve NFs run-
ning in containers or VMs, which are then connected via
vSwitch. In this setup VMs and containers provide isola-
tion, ensuring that one NF cannot access memory belong-
ing to another and the failure of an NF does not bring down
another. The vSwitch abstracts NICs, so that multiple NFs
can independently access the network, and is also respon-
sible for transferring packets between NFs. This allows
several NFs to be consolidated on a single physical ma-
chine and allows operators to “chain” several NFs together
i.e., ensure packets output from one NF are sent to another.

However these mechanisms carry a significant perfor-
mance penalty. When compared to a single process with
access to a dedicated NIC, per-core throughput drops by
up to 3⇥ when processing 64B (minimum size) packets
using containers, and by up to 7⇥ when using VMs. This
gap widens when NFs are chained together; containers are
up to 7⇥ slower than a case where all NFs run in the same
process, and VMs are up to 11⇥ slower. Finally, running
chaining multiple NFs in a single process is up to 6⇥ faster
than a case where each NF runs in a container (or VM)
and is allocated its own core – this shows that adding cores
does not address this performance gap. We provide more
details on these results in §5.3.

The primary reason for this performance difference it
that during network I/O packets must cross a hardware
memory isolation boundary. This entails a context switch
(or syscall), or requires that packets must cross core bound-
aries; both of which incur significant overheads. We avoid
these overheads by relying on compile-time and runtime
checks to enforce memory isolation in software. This is
similar what was proposed by Singularity [20]. To further
reduce packet I/O costs we use unique types [13] to im-
plement safe 0-copy packet I/O between NFs. We call this
technique Zero-Copy Software Isolation (ZCSI) and show
that it provides low-overhead isolation for NFs.

3 Design
In this section we describe the design of NetBricks, start-
ing with the programming abstractions and ending with
the execution environment. We focus on NetBricks’s archi-
tecture in this section, and present implementation notes
in the next section.

3.1 Programming Abstractions
Network functions in NetBricks are built around several
basic abstractions, whose behavior is dictated by user sup-
plied functions (UDFs). An NF is specified as a directed
graph with these abstractions as nodes. These abstrac-
tions fall into five basic categories – packet processing,

bytestream processing, control flow, state management,
and event scheduling – which we now discuss in turn.

Abstractions for Packet Processing: Each packet in
NetBricks is represented by a structure containing (i) a
stack of headers; (ii) the payload; and (iii) a reference to
any per-packet metadata. Headers in NetBricks are struc-
tures which include a function for computing the length
of the header based on its contents. Per-packet metadata
is computed (and allocated) by UDFs and is used to pass
information between nodes in an NF. UDFs operating on a
packet are provided with the packet structure, and can ac-
cess the last parsed header, along with the payload and any
associated metadata. Each packet’s header stack initially
contains a “null” header that occupies 0 bytes.

We provide the following packet processing operators:
• Parse: Takes as input a header type and a packet

structure (as described above). The abstraction parses
the payload using the header type and pushes the
resulting header onto the header stack and removes
bytes representing the header from the payload.

• Deparse: Pops the bottom most header from the
packet’s header stack and returns it to the payload.

• Transform: This allows the header and/or payload
to be modified as specified by a UDF. The UDF can
make arbitrary changes to the packet header and pay-
load, change packet size (adding or removing bytes
from the payload) and can change the metadata or
associate new metadata with the packet.

• Filter: This allows packet’s meeting some criterion
to be dropped. UDFs supplied to the filter abstraction
return true or false. Filter nodes drops all packets for
which the UDF returns false.

Abstractions for Bytestream Processing: UDFs oper-
ating on bytestreams are given a byte array and a flow
structure (indicating the connection). We provide two op-
erators for bytestream processing:

• Window: This abstraction takes four input parame-
ters: window size, sliding increment, timeout and a
stream UDF. The abstraction is responsible for receiv-
ing, reordering and buffering packets to reconstruct
a TCP stream. The UDF is called whenever enough
data has been received to form a window of the ap-
propriate size. When a connection is closed or the
supplied timeout expires, the UDF is called with all
available bytes. By default, the Window abstraction
also forwards all received packets (unmodified), al-
lowing windows to be processed outside of the regu-
lar datapath. Alternatively, the operator can drop all
received packets, and generate and send a modified
output stream using the packetize node.

• Packetize: This abstraction allows users to convert

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 205

byte arrays into packets. Given a byte array and a
header stack, the implementation segments the data
into packets with the appropriate header(s) attached.

Our current implementations of these operators assume
the use of TCP (i.e., we use the TCP sequence numbers
to do reordering, use FIN packets to detect a connection
closing, and the Packetize abstraction applies headers by
updating the appropriate TCP header fields), but we plan
to generalize this to other protocols in the future.

Abstractions for Control Flow Control flow abstrac-
tions in NetBricks are necessary for branching (and merg-
ing branches) in the NF graph. Branching is required to
implement conditionals (e.g., splitting packets according
to the destination port, etc.), and for scaling packet process-
ing across cores. To efficiently scale across multiple cores,
NFs need to minimize cross-core access to data (to avoid
costs due to cache effects and synchronization); however,
how traffic should be partitioned to meet this objective
depends on the NF in question. Branching constructs in
NetBricks therefore provide NF authors a mechanism to
specify an appropriate partitioning scheme (e.g., by port
or destination address or connection or as specified by a
UDF) that can be used by NetBricks’s runtime. Further-
more, branching is often also necessary when chaining
NFs together. Operators can use NetBricks’s control flow
abstractions to express such chaining behavior by dictating
which NF a packet should be directed to next. To accom-
plish these various goals, NetBricks offers three control
flow operators:

• Group By: Group By is used either to explicitly
branch control flow within an NF or express branches
in how multiple NFs are chained together. The group
by abstraction takes as input the number of groups
into which packets are split and a packet-based UDF
which given a packet returns the ID of the group to
which it belongs. NetBricks also provides a set of
predefined grouping functions that group traffic using
commonly-used criterion (e.g., TCP flow).

• Shuffle: Shuffles is similar to Group By except that
the number of output branches depends on the number
of active cores. The runtime uses the group ID output
by the shuffle node to decide the core on which the
rest of the processing for the packet will be run. Simi-
lar to Group By, NF writers can use both user-defined
functions and predefined functions with shuffle nodes.
Semantically, the main difference lies in the fact that
shuffle outputs are processed on other cores, and the
number of outputs is not known at compile time.

• Merge: Merge provides a node where separate pro-
cessing branches can be merged together. All packets
entering a merge node exit as a single group.

State Abstraction Modern processors can cheaply pro-
vide consistent (serializable) access to data within a core;
however, cross-core access comes at a performance cost be-
cause of the communication required for cache coherence
and the inherent cost of using synchronization primitives
such as locks. As a result, NFs are commonly programmed
to partition state and avoid such cross-core accesses when
possible, or use looser consistency (reducing the frequency
of such accesses) when state is not partitionable in this
way. Rather than requiring NF writers to partition state and
reason about how to implement their desired consistency
guarantees, NetBricks provides state abstractions.

Our state abstractions partition the data across cores.
Accesses within a core are always synchronized, but we
provide several options for other accesses, including (a) no-
external-access, i.e., only one core accesses each partition;
(b) bounded inconsistency where only one core can write
to a partition, but other cores can read these writes within
a user supplied bound (specified as number of updates);
and (c) strict-consistency where we use traditional synchro-
nization mechanisms to support serializable multi-reader,
multi-writer access.

Abstractions for Scheduled Events We also support
invocation nodes, which provide a means to run arbitrary
UDFs at a given time (or periodically), and can be used
to perform tasks beyond packet processing (e.g., collect
statistics from a monitoring NF).

3.2 Execution Environment
Next we describe NetBricks’s runtime environment, which
is responsible for providing isolation between NFs, and
NF placement and scheduling.

Isolation As we discuss in §5, container and VM based
isolation comes at a significant penalty for simple NFs (for
very complex NFs, the processing time inside the NF dom-
inates all other factors, and this is where the efficiency of
the NFs built with NetBricks becomes critical). NetBricks
therefore takes a different tack and uses software isolation.
Previously, Singularity [20] showed that the use of safe
languages (i.e., ones which enforce certain type checks)
and runtimes can be used to provide memory isolation that
is equivalent to what is provided by the hardware mem-
ory management unit (MMU) today. NetBricks borrows
these ideas and builds on a safe language (Rust) and uses
LLVM [28] as our runtime. Safe languages and runtime
environments provide four guarantees that are crucial for
providing memory isolation in software: (a) they disallow
pointer arithmetic, and require that any references acquired
by a code is either generated due to an allocation or a func-
tion call; (b) they check bounds on array accesses, thus
preventing stray memory accesses due to buffer overflows

206 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(and underflows); (c) they disallow accesses to null object,
thus preventing applications from using undefined behav-
ior to access memory that should be isolated; and (d) they
ensure that all type casts are safe (and between compatible
objects). Traditionally, languages providing these features
(e.g., Java, C#, Go, etc.) have been regarded as being too
slow for systems programming.

This situation has improved with recent advances in lan-
guage and runtime design, especially with the widespread
adoption of LLVM as a common optimization backend
for compilers. Furthermore, recent work has helped elimi-
nate bounds checks in many common situations [2], and
recently Intel has announced hardware support [18] to re-
duce the overhead of such checks. Finally, until recently
most safe languages relied on garbage collection to safely
allocate memory. The use of garbage collection results in
occasional latency spikes which can adversely affect per-
formance. However, recent languages such as Rust have
turned to using reference counting (smart pointers) for heap
allocations, leading to predictable latency for applications
written in these languages. These developments prompted
us to revisit the idea of software isolation for NFs; as we
show later in §5, NetBricks achieves throughputs and 99th

percentile latency that is comparable with NFs written in
more traditional system languages like C.

NFV requires more than just memory isolation; NFV
must preserve the semantics of physical networks in the
sense that an NF cannot modify a packet once it has been
sent (we call this packet isolation). This is normally imple-
mented by copying packets as they are passed from NF to
NF, but this copying incurs a high performance overhead
in packet-processing applications. We thus turn to unique
types [13] to eliminate the requirement that packets be
copied, while preserving packet isolation.

Unique types, which were originally proposed as a
means to prevent data races, disallow two threads from
simultaneously having access to the same data. They were
designed so that this property could be statically verified
at compile time, and thus impose no runtime overhead. We
design NetBricks so that calls between NFs are marked to
ensure that the sender looses access to the packet, ensur-
ing that only a single NF has access to the packet. This
allows us to guarantee that packet isolation holds without
requiring any copying. Note that it is possible that some
NFs (e.g., IDSes or WAN optimizers) might require access
to packet payloads after forwarding packets; in this case
the NF is responsible for copying such data.

We refer to the combination of these techniques as Zero-
Copy Soft Isolation (ZCSI), which is the cornerstone of
NetBricks’s execution environment. NetBricks runs as a
single process, which maybe assigned one or more cores

for processing and one or more NICs for packet I/O. We
forward packets between NFs using function calls (i.e., in
most cases there are no queues between NFs in a chain,
and queuing is done by the receiving NF).

Placement and Scheduling A single NetBricks process
is used to run several NFs, which we assume are arranged
in several parallel directed graphs – these parallel graphs
would be connected to different network interfaces, as
might be needed in a multi-tenant scenario where different
tenants are handled by different chains of NFs. In addition
to the nodes corresponding to the abstractions discussed
above, these graphs have special nodes for receiving pack-
ets from a port, and sending packets out a NIC. Before
execution NetBricks must decide what core is used to run
each NF chain. Then, since at any time there can be sev-
eral nodes in this graph with packets to process, NetBricks
must make scheduling decisions about which packet to
process next.

For placement, we envision that eventually external man-
agement systems (such as E2 [37]) would be responsible
for deciding how NFs are divided across cores. At present,
to maximize performance we place an entire NF chain on
a single core, and replicate the processing graph across
cores when scaling. More complex placement policies can
be implemented using shuffle nodes, which allow packets
to be forwarded across cores.

We use run-to-completion scheduling, i.e., once a packet
has entered the NF, we continue processing it until it exits.
This then leaves the question of the order in which we let
packets enter the NF, and how we schedule events that
involve more than one packet. We denote such process-
ing nodes as “schedulable”, and these include nodes for
receiving packets from a port, Window nodes (which need
to schedule their UDF to run when enough data has been
collected), and Group By nodes (which queue up packets
to be processed by each of the branches). Currently, we use
a round-robin scheduling policy to schedule among these
nodes (implementing more complex scheduling is left to
future work).

4 Implementation
While the previous section presented NetBricks’s over-
all design, here we describe some aspects of its use and
implementation.

4.1 Two Example NFs
We use two example NFs to demonstrate how NFs are

written in NetBricks. First, in Listing 1 we present a trivial
NF that decrements the IP time-to-live (TTL) field and
drops any packets with TTL 0. NFs in NetBricks are gen-
erally packaged as public functions in a Rust module, and

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 207

1 pub fn ttl_nf<T: ’static + NbNode>(input: T)
2 -> CompositionNode {
3 input.parse::<MacHeader>()
4 .parse::<IpHeader>()
5 .transform(box |pkt| {
6 let ttl = pkt.hdr().ttl() - 1;
7 pkt.mut_hdr().set_ttl(ttl);
8 })
9 .filter(box |pkt| {

10 pkt.hdr().ttl() != 0
11 })
12 .compose()
13 }

Listing 1: NetBricks NF that decrements TTL, dropping packets with
TTL=0.

1 // cfg is configuration including

2 // the set of ports to use.

3 let ctx = NetbricksContext::from_cfg(cfg);
4 ctx.queues.map(|p| ttl_nf(p).send(p));

Listing 2: Operator code for using the NF in Listing 1

an operator can create a new instance of this NF using
the ttl nf function (line 1), which accepts as input a
“source” node. The NF’s processing graph is connected
to the global processing graph (i.e., the directed graph of
how processing is carried out end-to-end in a NetBricks
deployment) through this node. The NF’s processing graph
first parses the ethernet (MAC) header from the packet
(line 3), and then parses the IP header (line 4). Note that
in this case where the IP header begins depends on the
contents of the ethernet header and can vary from packet
to packet. Once the IP header has been parsed the NF uses
the transform operator to decrement each packet’s TTL.
Finally, we use the filter operator to drop all packets
with TTL 0. The compose operator at the end of this NF
acts as a marker indicating NF boundaries, and allows NFs
to be chained together. This NF includes no shuffle op-
erators, however by default NetBricks ensures that packets
from the same flow are processed by a single core. This is
to avoid bad interactions with TCP congestion control. List-
ing 2 shows how an operator might use this NF. First, we
initialize a NetbricksContext using a user supplied
configuration (Line 2). Then we create pipelines, such that
for each pipeline (a) packets are received from an input
queue; (b) received packets are processed using ttl nf;
and (c) packets are output to the same queue. Placement
of each pipeline in this case is determined by the core to
which a queue is affinitized, which is specified as a part of
the user configuration.

Next, in Listing 3 we present a partial implementation
of Maglev [9], a load balancer built by Google that was
the subject of a NSDI 2016 paper. Maglev is responsible
for splitting incoming user requests among a set of back-
end servers, and is designed to ensure that (a) it can be
deployed in a replicated cluster for scalability and fault
tolerance; (b) it evenly splits traffic between backends;
and (c) it gracefully handles failures, both within the Ma-

1 pub fn maglev_nf<T: ’static + NbNode>(
2 input: T
3 backends: &[str],
4 ctx: nb_ctx,
5 lut_size: usize)
6 -> Vec<CompositionNode> {
7 let backend_ct = backends.len();
8 let lookup_table =
9 Maglev::new_lut(ctx,

10 backends,
11 lut_size);
12 let mut flow_cache =
13 BoundedConsistencyMap::<usize, usize>::new();
14

15 let groups =
16 input.shuffle(BuiltInShuffle::flow)
17 .parse::<MacHeader>()
18 .group_by(backend_ct, ctx,
19 box move |pkt| {
20 let hash =
21 ipv4_flow_hash(pkt, 0);
22 let backend_group =
23 flow_cache.entry(hash)
24 .or_insert_with(|| {
25 lookup_table.lookup(hash)});
26 backend_group
27 });
28 groups.iter().map(|g| g.compose()).collect()
29 } Listing 3: Maglev [9] implemented in NetBricks.

glev cluster and among the backends. Maglev uses a novel
consistent hashing algorithm (based on a lookup table) to
achieve these aims. It however needs to record the mapping
between flows and backends to ensure that flows are not
rerouted due to failures.

The code in Listing 3 represents the packet processing
and forwarding portions of Maglev; our code for generat-
ing the Maglev lookup table and consistent hashing closely
resemble the pseudocode in Section 3.4 of the paper. The
lookup table is stored in a bounded consistency state store,
which allows the control plane to update the set of active
backends over time. An instance of the Maglev NF is in-
stantiated by first creating a Maglev lookup table (Line
8) and a cache for recording the flow to backend server
mappings (Line 12). The latter is unsynchronized (i.e., it is
not shared across cores); this is consistent with the descrip-
tion in the Maglev paper. We then declare the NF (starting
at line 15); we begin by using a shuffle node to indicate
that the NF need all packets within a flow (line 16) to be
processed by the same core, then parse the ethernet header,
and add a group by node (Line 18). The group by node uses
ipv4 flow hash, a convenience function provided by
NetBricks, to extract the flow hash (which is based on both
the IP header and the TCP or UDP header of the packet)
for the packet. This function is also responsible for ensur-
ing that the packet is actually a TCP or UDP packet (the
returned hash is 0 otherwise). The NF then uses this hash
to either find the backend previously assigned to this flow
(line 24) or assigns a new backend using the lookup table
(line 25); this determines the group to which the packet
being processed belongs. Finally, the NF returns a vector

208 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of composition nodes, where the nth composition node cor-
responds to the nth backend specified by the operator. The
operator can thus forward traffic to each of the backends
(or perform further processing) as appropriate. We com-
pare the performance of the NetBricks version of Maglev
to Google’s reported performance in §5.2.

4.2 Operator Interface
As observed in the previous examples, operators running
NetBricks chain NFs together using the same language
(Rust) and tools as used by NF authors. This differs from
current NF frameworks (e.g., E2, OpenMANO, etc.) where
operators are provided with an interface that is distinct
from the language used to write network functions. Our
decision to use the same interface is for two reasons: (a) it
provides many optimization opportunities, in particular we
use the Rust compiler’s optimization passes to optimize the
operator’s chaining code, and can use LLVM’s link-time
optimization passes [28] to perform whole-program opti-
mization, improving performance across the entire packet
processing pipeline; and (b) it provides an easy means for
operators to implement arbitrarily complicated NF chain-
ing and branching.

4.3 Implementation of Abstractions
We now briefly discuss a few implementation details for
abstractions in NetBricks. First, packet processing abstrac-
tions in NetBricks are lazy; i.e., they do not perform com-
putation until the results are required for processing. For
example, parse nodes in NetBricks perform no computa-
tion until a transform, filter, group by, or similar node (i.e.,
a node with a UDF that might access the packet header
or payload) needs to process a packet. Secondly, as is
common in high-performance packet processing, our ab-
stractions process batches of packets at a time. Currently
each of our abstractions implements batching to maximize
common-case performance, in the future we plan on look-
ing at techniques to choose the batching technique based
on both the UDF and abstraction.

4.4 Execution Environment
The NetBricks framework builds on Rust, and we use
LLVM as our runtime. We made a few minor modifica-
tions to the default Rust nightly install: we changed Cargo
(the Rust build tool) to pass in flags that enabled machine
specific optimizations and the use of vector instructions
for fast memory access; we also implemented a Rust lint
that detects the use of unsafe pointer arithmetic inside NFs,
and in our current implementation we disallow building
and loading of NF code that does not pass this lint. Beyond
these minor changes, we found that we could largely im-
plement our execution environment using the existing Rust

toolchain. In the future we plan to use tools developed in
the context of formal verification efforts like RustBelt [7] to
(a) statically verify safety conditions in binary code (rather
than relying on the Lint tool) and (b) eliminate more of the
runtime checks currently performed by NetBricks.

5 Evaluation
5.1 Setup
We evaluate NetBricks on a testbed of dual-socket servers
equipped with Intel Xeon E5-2660 CPUs, each of which
has 10 cores. Each server has 128GB of RAM, which is
divided equally between the two sockets. Each server is
also equipped with an Intel XL710 QDA2 40Gb NIC. For
our evaluation we disabled hyper-threading and adjusted
the power settings to ensure that all cores ran at a constant
2.6GHz2. We also enabled hardware virtualization features
including Intel VT. These changes are consistent with set-
tings recommended for NFV applications. The servers run
Linux kernel 4.6.0-1 and NetBricks uses DPDK version
16.04 and the Rust nightly version. For our tests we relied
on two virtual switches (each configured as recommended
by authors): OpenVSwitch with DPDK (OVS DPDK) [15],
the de-facto virtual switch used in commercial deploy-
ments, and SoftNIC [17], a new virtual switch that has
been specifically optimized for NFV use cases [37].

We run VMs using KVM; VMs connect to the virtual
switch using DPDK’s vhost-user driver. We run con-
tainers using Docker in privileged mode (as required by
DPDK [8]), and connect them to the virtual switch us-
ing DPDK’s ring PMD driver. By default, neither Open-
VSwitch nor SoftNIC copy packets when using the ring
PMD driver and thus do not provide packet isolation (be-
cause an NF can modify packets it has already sent). For
most of our evaluation we therefore modify these switches
to copy packets when connecting containers. However,
even with this change, our approach (using DPDK’s ring
PMD driver) outperforms the commonly recommended
approach of connecting containers with virtual switches
using veth pairs (virtual ethernet devices that connect
through the kernel). These devices entail a copy in the ker-
nel, and hence have significantly worse performance than
the ring based connections we use. Thus, the performance
we report are a strict upper bound on can be achieved using
containers safely.

For test traffic, we use a DPDK-based packet generator
that runs on a separate server equipped with a 40Gb NIC
and is directly connected to the test server without any in-

2In particular we disabled C-state and P-state transitions, isolated
CPUs from the Linux scheduler, set the Linux CPU QoS feature to
maximize performance, and disabled uncore power scaling.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 209

�
�
�
�
�
��
��
��
��
��
��

� � � � �� �� ��

��
��
��
��
��

�
��
�
��
��
��

������ �� ������ �������� ����������

��������
���������

Figure 1: Throughput achieved by a NetBricks NF and an NF written in
C using DPDK as the number of memory accesses in a large array grows.

tervening switches.The generator acts as traffic source and
sink and we report the throughput and latency measured at
the sink. For each run we measure the maximum through-
put we can achieve with zero packet loss, and report the
median taken across 10 runs.

5.2 Building NFs
5.2.1 Framework Overheads

We begin by evaluating the overheads imposed by Net-
Bricks’ programming model when compared to baseline
NFs written more traditionally using C and DPDK. To
ensure that we measure only framework overheads we con-
figure the NIC and DPDK in an identical manner for both
NetBricks and the baseline NF.

Overheads for Simple NFs As an initial sanity check,
we began by evaluating overheads on a simple NF (List-
ing 1) that on receiving a packet, parses the packet until
the IP header, then decrements the packet’s IP time-to-live
(TTL) field, and drops any packets whose TTL equals 0.
We execute both the NetBricks NF and the equivalent C
application on a single core and measure throughput when
sending 64 byte packets. As expected, we find that the
performance for the two NFs is nearly identical: across
10 runs the median throughput for the native NF is 23.3
million packet per-second, while NetBricks achieves 23.2
million packets per second. In terms of latency, at 80%
load, the 99th percentile round trip time for the native NF
is 16.15µs, as compared to 16.16µs for NetBricks.

Overheads for Checking Array Bounds Our use of a
safe language imposes some overheads for array accesses
due to the cost of bounds checking and such checks are
often assumed to be a dominant source of overhead in-
troduced by safe languages.3 While these checks can be
eliminated statically in some cases (e.g., where bounds

3Null-checks and other safety checks performed by the Rust runtime
are harder to separate out; however, these overheads are reflected in the
overall performance we report below.

can be placed on the index statically), this is not always
possible. We measured the impact of these checks using
a network function that updates several cells in a 512KB
array while processing each packet. The set of cells to be
updated depends on the UDP source port number of the
packet being processed, making it impossible to eliminate
array bounds checks. We compare the overheads for our
implementation in NetBricks to a baseline NF written in
C (using DPDK for packet I/O), and behaving identically.
In both cases we use a single-core and use packets with
randomly assigned UDP source ports. Figure 1 shows the
throughput achieved by each NF as the number of mem-
ory accesses per packet is increased. When processing a
packet necessitates a single memory access, NetBricks
imposes a 20% overhead compared to the baseline. We
see that this performance overhead remains for a small
number (1-8) of accesses per packet. However, somewhat
counter-intuitively, with 16 or higher accesses per packet,
the performance overhead of our approach drops; this is
because, at this point, the number of cache misses grows
and the performance impact of these misses dominates that
from our bounds checks.

To test the impact of this overhead in a more realis-
tic application we implemented a longest prefix match
(LPM) lookup table using the DIR-24-8 algorithm [16] in
Rust, and built a NetBricks NF that uses this data struc-
ture to route IP packets. We compare the performance of
this NF to one implemented in C, which uses the DIR-
24-8 implementation included with DPDK [24]. Lookups
using this algorithm require between 1 and 2 array ac-
cesses per packet. For our evaluation we populated this
table with 16000 random rules. We find that NetBricks
can forward 15.73 million packet per second, while the
native NF can forward 18.03 million packets per second
(so the NetBricks NF is 14% slower). We also measure
the 99th percentile round trip time at 80% load (i.e., the
packet generator was generating traffic at 80% of the 0-loss
rate), this value indicates the per-packet latency for the NF
being tested. The 99th percentile RTT for NetBricks was
18.45µs, while it was 16.15µs for the native NF, which
corresponds to the observed difference in throughputs.

5.2.2 Generality of Programming Abstractions

To stress test the generality of our programming abstrac-
tions, we implemented a range of network functions from
the literature:

• Firewall: is based on a simple firewall implemented
in Click [5]; the firewall performs a linear scan of an
access control list to find the first matching entry.

• NAT: is based on MazuNAT [41] a Click based NAT
implemented by Mazu Networks, and commonly used
in academic research.

210 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

NF NetBricks Baseline
Firewall 0.66 0.093
NAT 8.52 2.7
Sig, Matching 2.62 0.983
Monitor 5 1.785

Table 1: Throughputs for NFs implemented using NetBricks as compared
to baseline from the literature.

• Signature Matching: a simple NF similar to the core
signature matching component of the Snort intrusion
prevention system [42].

• Monitor: maintains per-flow counters similar to the
monitor module found in Click and commonly used
in academic research [43]

• Maglev: as described in § 4, we implemented a ver-
sion of the Maglev scalable load-balancer design [9].

In Table 1, we report the per-core throughput achieved
by the first four applications listed above, comparing our
NetBricks implementation and the original system on
which we based on our implementation. We see that our
NetBricks implementations often outperform existing im-
plementations – e.g., our NAT has approximately 3⇥ better
performance than MazuNAT [41]. The primary reason for
this difference is that we incorporate many state-of-the-
art optimizations (such as batching) that were not imple-
mented by these systems.

In the case of Maglev, we do not have access to the
source code for the original implementation and hence
we recreate a test scenario similar to that corresponding
to Figure 9 in [9] which measures the packet processing
throughput for Maglev with different kinds of TCP traffic.
As in [9], we generate short-lived flows with an average of
10 packets per flow and use a table with 65,537 entries (cor-
responding to the small table size in [9]). Our test server
has a 40Gbps link and we measure throughput for (min-
size) 64B packets. Table 2 shows the throughput achieved
by our NetBricks implementation for increasing numbers
of cores (in Mpps), together with comparable results re-
ported for the original Maglev system in [9]. We see that
our NetBricks implementation offers between 2.9⇥ and
3.5⇥ better performance than reported in [9]. The median
latency we observed in this case was 19.9µS while 99th

percentile latency was 32µS. We note however that (a) we
ran on different hardware; and (b) we did not have access
to the base implementation and hence comment on parity.
Therefore these numbers are not meant to indicate that
our performance is better, just that NetBricks can achieve
comparable results as obtained by a hand tuned NF.

Our point here is not that NetBricks will outperform
highly optimized native implementations; instead, our re-
sults merely suggest that NetBricks can be used to imple-
ment a wide variety of NFs, and that these implementations

of Cores NetBricks Impl. Reported
1 9.2 2.6
2 16.7 5.7
3 24.5 8.2
4 32.24 10.3

Table 2: Throughputs for the NetBricks implementation of Maglev (Net-
Bricks) when compared to the reported throughput in [9] (Reported) in
millions of packets per second (MPPS).

are both simpler than the native implementations (e.g., our
Maglev implementation is 150 lines of code) and roughly
comparable in performance.

5.3 Execution Environment
NetBricks exploits the isolation properties of safe lan-
guages and runtime checks to avoid the costs associated
with crossing process and/or core boundaries. We first
quantify these savings in the context of a single NF and
then evaluate how these benefits accrue as the length of
a packet’s NF chain increases. Note that these crossing
costs are only important for simple NFs; once the compu-
tational cost of the NF becomes the bottleneck, then our
execution environment becomes less important (though
NetBricks’s ability to simply implement high-performance
NFs becomes more important).

5.3.1 Cost of Isolation: Single NF

We evaluate the overhead of using VMs or containers for
isolation and compare the resultant performance to that
achieved with NetBricks. We first consider the simplest
case of running a single test NF (which is written using
NetBricks) that swaps the source and destination ethernet
address for received packets and forwards them out the
same port. The NetBricks NF adds no additional overhead
when compared to a native C NF, and running the same
NF in all settings (VM, containers, NetBricks) allows us
to focus on the cost of isolation.

The setup for our experiments with containers and VMs
is shown in Figure 2: a virtual switch receives packets from
the NIC, these packets are then forwarded to the NF which
is running within a VM or container. The NF processes the
packet and sends it back to the vSwitch, which then sends
it out the physical NIC. Our virtual switches and NFs run
on DPDK and rely on polling. We hence assign each NF
its own CPU core and assign two cores to the switch for
polling packets from the NIC and the container.4 Isola-
tion introduces two sources of overheads: overheads from
cache and context switching costs associated with crossing
process (and in our case core) boundaries, and overheads

4This configuration has been shown to achieve better performance
than one in which the the switch and NFs share a core [35]. Our own
experiments confirm this, we saw as much as 500% lower throughput
when cores were shared.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 211

NIC

Core 0 Core 1 Core 2 Core 3

vSwitch NF

1

2

3

4

Figure 2: Setup for evaluating single NF per-
formance for VMs and containers.

NIC

Core 0

NF

NetBricks

Core 1

1 2

Figure 3: Setup for evaluating single NF per-
formance using NetBricks.

�

�

��

��

��

��

��
��
��
��
��

�
��
�
��
��
��

���������
������ ������� ���������

������� ���������
��� ���������

���� ��
��� ��

Figure 4: Throughput achieved using a single
NF running under different isolation environ-
ments.

from copying packets. To allow us to analyze these effects
separately we include in our results a case where SoftNIC
is configured to send packets between containers without
copying (0-copy SoftNIC Container), even though this vi-
olates our desired packet isolation property. We compare
these results to NetBricks running in the setup shown in
Figure 3. In this case NetBricks is responsible for receiving
packets from the NIC, processing them using the NF code
and then sending them back out. We run NetBricks on a
single core for this evaluation.

Figure 4 shows the throughput achieved for the dif-
ferent isolation scenarios when sending 64B minimum
sized packets. Comparing the 0-copy SoftNIC throughput
against NetBricks’s throughput, we find that just crossing
cores and process isolation boundaries results in perfor-
mance degradation of over 1.6⇥ when compared to Net-
Bricks (this is despite the fact that our NetBricks results
used fewer cores overall; 1 core for NetBricks vs. 3 in
the other cases). When packets are copied (SoftNIC Con-
tainer) throughput drops further and is 2.7⇥ worse than
NetBricks. Generally the cost for using VMs is higher than
the cost for using Containers; this is because Vhost-user,
a virtualized communication channel provided by DPDK
for communicating with VMs imposes higher overheads
than the ring based communication channel we use with
containers.

The previous results (Figure 9) focused on performance
with 64B packets, and showed that as much as 50% of
the overhead in these systems might be due to copying
packets. We expect that this overhead should increase with
larger packets, hence we repeated the above tests for 1500B
packets and found that the per-packet processing time (for
those scenarios that involve copying packets) increased by
approximately 15% between 64B and 1500B packets (the
small size of the increase is because the cost of allocation
dominates the cost of actually copying the bits).

5.3.2 Cost of Isolation: NF Chains

Next, we look at how performance changes when each
packet is handled by a chain of NFs. For simplicity, we

NIC

Core 0 Core 1 Core 3 Core 4

vSwitch NF 0 NF 1

1

2

3

6

45

Figure 5: Setup for evaluating the performance
for a chain of NFs, isolated using VMs or Con-
tainers.

NIC

Core 0 Core 1

NF 0 NF 1 NF 0 NF 1

NetBricks NetBricks

1

2

3

Figure 6: Setup for evaluating the performance
for a chaining of NFs, running under NetBricks.

generate chains by composing multiple instances of a sin-
gle test NF; i.e., every NF in the chain is identical and we
only vary the length of the chain. Our test NF performs
the following processing: on receiving a packet, the NF
parses the ethernet and IP header, and then decrement the
time-to-live (TTL) field in the IP header. The NF drops any
packets where the TTL is 0.

We use the setup shown in Figure 5 to measure these
overheads when using VMs and containers. As before, we
assign the virtual switch two cores, and we place each VM
or container on a separate core. We evaluate NetBricks
using the setup shown in Figure 6. We ran NetBricks in
two configurations: (a) one where NetBricks was run on a
single core, and (b) another where we gave NetBricks as
many cores as the chain length; in the later case NetBricks
uses as many cores as the container/VM runs.

In Figure 7 we show the throughput as a function of
increasing chain length. We find that NetBricks is up to 7⇥
faster than the case where containers are connected using
SoftNIC and up to 11⇥ faster than the case where VMs
are connected using SoftNIC. In fact NetBricks is faster

212 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

�

�

��

��

��

��

��

� � � � � � � �

��
��

��
��

��
�

��
��

��
��

��
�

��
��

��
��

��
�

��
��

��
��

��
�

��
��
��
��
��

�
��
�
��
��
��

����� ������

����� ����� �� ��� ��� ��� �� �� ��� ��

Figure 7: Throughput with increasing chain length when using 64B
packets. In this figure NB-MC represents NetBricks with multiple cores,
NB-1C represents NetBricks with 1 core.

even when run on a single core, we observe that it provides
4⇥ higher throughput than is achieved when containers are
connected through SoftNIC, and up to 6⇥ higher through-
put when compared to the case where VMs are connected
using SoftNIC. Furthermore, by comparing to the 0-copy
SoftNIC case, we find that for 64B packets copying can
result in a performance drop of up to 3⇥. Finally, observe
that there is a dip in NetBricks’s performance with multi-
ple cores once the chain is longer than four elements. This
is because in our setup I/O becomes progressively more
expensive as more cores access the same NIC, and with
more than 4 parallel I/O threads this cost dominates any
improvements from parallelism. We believe this effect is
not fundamental, and is a result of our NIC and the cur-
rent 40Gbps driver in DPDK. NetBricks’s performance
benefits are even higher when we replace SoftNIC with
OpenVSwitch.5

The above results are for 64B packets; as before, we
find that while copying comes at a large fixed cost (up to
3⇥ reduction in throughput), increasing packet sizes only
results in an approximately 15% additional degradation.
Finally, we also measured packet processing latency when
using NetBricks, containers and VMs; Figure 8 shows the
99th percentile round trip time at 80% of the maximum
sustainable throughput as a metric for latency.

Effect of Increasing NF Complexity Finally, we ana-
lyze the importance of our techniques for more complex
NFs. We use cycles required for processing each packet as
a proxy for NF complexity. We reuse the setup for single
NF evaluations (Figure 2, 3), but modify the NF so that it
busy loops for a given number of cycles after modifying
the packet, allowing us to vary the per-packet processing
time. Furthermore, note that in the case where VMs or
containers the setup itself uses 3 cores (1 for the NF and 2

5We were unable to run experiments with more than four VMs chained
together using OpenVSwitch because we ran out of memory in our
configuration.

�

��

��

��

��

���

���

���

� � � � � � � �

��
��

��
��

��
�

��
��

��
��

��
�

��
��

��
��

��
�

��
��

��
��

��
�

��
��
��
�
��
��
��
��
��
��
��

����� ������

����� �� ��� ��� ��� �� �� ��� ��

Figure 8: 99th percentile RTT for 64B packets at 80% load as a function
of chain length.

�

�

��

��

��

��

��

��

� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����
��
��
��
��
��

�
��
�
��
��
��

���������� ������ ��� ������

���� �� �����
���� �� �����

������� ���������
��� ���������

���� ��
��� ��

Figure 9: Throughput for a single NF with increasing number of cycles
per-packet using different isolation techniques.

for the vSwitch). Therefore, for this evaluation, in addition
to measuring performance with NetBricks on 1 core, we
also measure performance when NetBricks is assigned 3
cores (equalizing resources across the cases).

Figure 9 shows the throughput as a function of per-
packet processing requirements (cycles). As expected, as
we increase NF complexity, packet processing time starts
to be the dominant factor for determining performance, and
our runtime improvements have minimal effect once an
NF needs more than 300 cycles per packet. This reduction
in benefits when NF processing demands dominate also
applies to fast packet processing libraries such as DPDK.
Note however that the gains when NetBricks is given as
many cores as the traditional approaches (three) continue
to be significant even when NFs need more than 1000
cycles per packet. Thus, NetBricks’ approach to isolation
provides better performance per unit of allocated resource
when compared to current approaches.

6 Related Work
The works most closely related to NetBricks’ programming
model are Click and Snabb switch [14]. We have compared
NetBricks and Click throughout the paper, do not provide
further discussion here. Recent extensions to Click, e.g.,
NBA [26] and ClickNP [29], have looked at how to imple-
ment optimized Click elements through the use of GPUs
(NBA) and FPGAs (ClickNP). While offloading function-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 213

Framework
Memory
Isolation

Packet
Isolation Overheads

xOMB [1] 7 7 Low (function call)
CoMB [43] 7 7 Low (function call)

NetVM [21] 3 7 Very high (VM)
ClickOS [32] 3 3 High (lightweight VM)
HyperSwitch [40] 3 3 Very high (VM)
mSwitch [19] 3 3 Very high (VM)

NetBricks 3 3 Low (function call)

Table 3: A comparison with other NFV frameworks.

ality to such devices can yield great performance improve-
ments, this is orthogonal to our work. Adding the use of
offloads in NetBricks is left to future work. Snabb provides
the same programming model as Click but uses Lua [22]
instead of C++ for programming, which allows the use of
a high-level language but without actually raising the level
of abstraction (in terms of having the programmer deal
with all the low-level packet-handling issues).

There has also been a long line of work on develop-
ing network applications on specialized networking hard-
ware including NPUs [46], FPGAs [33] and programmable
switches [4]. Recent work including P4 [3] and Packet
Transactions [45] have looked at providing high level pro-
gramming tools for such hardware. Our work focuses on
network programming for general purpose CPUs and is
complementary to this work.

In terms of NetBricks’ execution model, work on li-
brary operating systems (e.g., MirageOS [31] and Draw-
bridge [39]) has decreased VM resource overheads and im-
proved VM performance by reducing the amount of code
run within each VM and improving the hypervisor. While
these projects have provided substantial performance im-
provements, they do not eliminate the isolation overheads
we focus on here nor do they address how to perform
efficient I/O in this environment.

As we have noted previously, our execution model is
closely related to software-isolated processes (SIPs) pro-
posed by Singularity [20]. The main difference is that our
work focuses on a single application domain – network
functions – where inter-NF communication is common
and greatly benefits from the use of software isolation. Fur-
thermore, Singularity was designed as a general purpose,
microkernel-based operating system, and focused on pro-
viding an efficient general implementation for application
developers. As a result Singularity’s design choices – e.g.,
the use of a garbage collected language, communication
through an exchange heap and queued channel, etc. – are
not optimized for the NFV use case.

Other work has proposed a variety of execution frame-
works specific to NFV [1,19,21,32,40,43]. We can broadly
divide these frameworks into two groups: Click-like frame-
works that run all NFs in a single process without isolation,

and VM-based frameworks. We present a comparison of
these frameworks and NetBricks in Table 3. As shown,
only NetBricks provides both isolation and low overheads.
Finally, In-Net [47] has looked at providing traffic isolation
for NFs in a network, and is orthogonal to our work.

Several attempts have also been made to offload vSwitch
functionality to NIC hardware. For example, FasTrak [34]
advocates using hardware virtualization (SR-IOV [6]) and
built-in switching capabilities of commodity NICs to inter-
connect VMs. This approach eliminates the cost of copying
packets in software by using hardware DMA. However,
I/O bus bandwidth is an order-of-magnitude lower (a few
GB/s) than cache and memory bandwidth (10s-100s of
GB/s), and this limits the number of packets that can be
transmitted in parallel and thus reduces the throughput that
can be achieved. Offloading switching to hardware also
limits flexibility in how packets are steered across NFs;
e.g., Intel’s 10 G NICs only support basic L2 switching.

IO-Lite [36], Container Shipping [38], and work done
for Solaris [25] have looked at solutions for implementing
zero-copy I/O. IO-Lite provided zero-copy isolation by
making buffers immutable. This necessitates creating a new
buffer on any write (similar to copy-on-write techniques)
and would therefore incur performance degradation when
modifications are required. Container shipping and the
Solaris approach unmap pages from the sending process
to provide zero-copy isolation. Page table modifications
require a trap into the kernel, and come at a significant
penalty [48]. By contrast our implementation of 0-copy
I/O imposes no runtime overheads.

7 Conclusion
As can be seen from our brief review of related work,
NetBricks is the only approach that enables developers to
write in high-level abstractions (thereby easing develop-
ment) while maintaining good performance and memory/-
packet isolation. We are continuing to explore the limits of
NetBricks’s generality – by implementing new NFs – and
increase the range of NetBricks’s low-level optimizations,
some of which are currently rather primitive. In service of
these goals, we have also made NetBricks and our exam-
ples available to the community at netbricks.io.

8 Acknowledgment
We thank our shepherd George Porter and the anonymous
reviewers for their comments. We also thank Ion Stoica,
Amin Tootoonchian and Shivaram Venkatraman for their
helpful feedback, which influenced both the design of
our system and the contents of this paper. This work was
funded in part by a grant from Intel Corporation, and by
NSF awards 1216073 and 1420064.

214 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

netbricks.io

References
[1] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and

A. Vahdat. xOMB: Extensible Open Middleboxes
with Commodity Servers. In ANCS, 2012.

[2] R. Bodı́k, R. Gupta, and V. Sarkar. ABCD: Elimi-
nating Array Bounds Checks on Demand. In PLDI,
2000.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese, et al. P4: Programming Protocol-
Independent Packet Processors. ACM SIGCOMM
Computer Communication Review, 44(3):87–95,
2014.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN. In
SIGCOMM, 2013.

[5] M. Dobrescu, K. Argyraki, and S. Ratnasamy. To-
ward Predictable Performance in Software Packet-
Processing Platforms. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), 2012.

[6] Y. Dong, X. Yang, L. Xiaoyong, J. Li, H. Guan, and
K. Tian. High Performance Network Virtualization
with SR-IOV. In IEEE HPCA, 2012.

[7] D. Dreyer. RustBelt: Logical Foundations for the
Future of Safe Systems Programming. http:
//plv.mpi-sws.org/rustbelt/ (Retrieved
05/05/2016), 2015.

[8] J. Eder. Can you run DPDK in a Container. Redhat
Blog http://goo.gl/UBdZpL, 2015.

[9] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A
Fast and Reliable Software Network Load Balancer.
In NSDI, 2016.

[10] ETSI. Network Functions Virtualisation. Retrieved
07/30/2014 http://portal.etsi.org/NFV/
NFV_White_Paper.pdf.

[11] L. Foundation. OPNFV. https://www.opnfv.
org/, 2016.

[12] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl,
X. Gao, A. Anand, T. Benson, A. Akella, and V. Sekar.
Stratos: A Network-Aware Orchestration Layer for
Middleboxes in the Cloud. http://arxiv.org/
abs/1305.0209, 2013.

[13] C. S. Gordon, M. J. Parkinson, J. Parsons, A. Brom-
field, and J. Duffy. Uniqueness and Reference Im-
mutability for Safe Parallelism. In OOPSLA, 2012.

[14] L. Gorrie. SNABB Switch. https://goo.gl/
8ox9kE retrieved 07/16/2015.

[15] J. Gross. The Evolution of OpenVSwitch. http://
goo.gl/p7QVek retrieved 07/13/2015, 2014. Talk
at LinuxCon.

[16] P. Gupta, S. Lin, and N. McKeown. Routing Lookups
in Hardware at Memory Access Speeds. In INFO-
COM, 1998.

[17] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and
S. Ratnasamy. SoftNIC: A Software NIC to Augment
Hardware. Technical Report UCB/EECS-2015-155,
EECS Department, University of California, Berke-
ley, May 2015.

[18] D. Hansen. Intel Memory Protection Extensions
(Intel MPX) for Linux*. https://01.org/
blogs/2016/intel-mpx-linux retrieved
05/07/2016, 2016.

[19] M. Honda, F. Huici, G. Lettieri, and L. Rizzo.
mSwitch: A Highly-Scalable, Modular Software
Switch. In SOSR, 2015.

[20] G. C. Hunt and J. R. Larus. Singularity: Rethinking
the Software Stack. ACM SIGOPS Operating Systems
Review, 41(2):37–49, 2007.

[21] J. Hwang, K. Ramakrishnan, and T. Wood. NetVM:
High Performance and Flexible Networking using
Virtualization on Commodity Platforms. Network
and Service Management, IEEE Transactions on,
12(1):34–47, 2015.

[22] R. Ierusalimschy, L. H. de Figueiredo, and W. Ce-
les Filho. Lua–an Extensible Extension Language.
In Software: Practice & Experience, 1995.

[23] Intel. Data Plane Develpment Kit. http://dpdk.
org/, 2016.

[24] Intel. DPDK: rte table lpm.h reference. http://
goo.gl/YBS4UO retrieved 05/07/2016, 2016.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 215

http://plv.mpi-sws.org/rustbelt/
http://plv.mpi-sws.org/rustbelt/
http://goo.gl/UBdZpL
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.opnfv.org/
https://www.opnfv.org/
http://arxiv.org/abs/1305.0209
http://arxiv.org/abs/1305.0209
https://goo.gl/8ox9kE
https://goo.gl/8ox9kE
http://goo.gl/p7QVek
http://goo.gl/p7QVek
https://01.org/blogs/2016/intel-mpx-linux
https://01.org/blogs/2016/intel-mpx-linux
http://dpdk.org/
http://dpdk.org/
http://goo.gl/YBS4UO
http://goo.gl/YBS4UO

[25] Y. A. Khalidi and M. N. Thadani. An Efficient Zero-
Copy I/O Framework for Unix. Sum Mircrosystems
Laboratories, Inc. Tech Report, 1995.

[26] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. B.
Moon. NBA (Network Balancing Act): A High-
Performance Packet Processing Framework for Het-
erogeneous Processors. In EuroSys, 2015.

[27] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transac-
tions on Computer Systems (TOCS), 18(3):263–297,
2000.

[28] C. Lattner and V. Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation.
In Code Generation and Optimization. IEEE, 2004.

[29] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,
Y. Xiong, and P. Cheng. ClickNP: Highly flexible
and High-performance Network Processing with Re-
configurable Hardware. In SIGCOMM, 2016.

[30] D. Lopez. OpenMANO: The Dataplane Ready Open
Source NFV MANO Stack. In IETF Meeting Pro-
ceedings, Dallas, Texas, USA, 2015.

[31] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating systems
for the cloud. In ASPLOS, 2013.

[32] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,
M. Honda, R. Bifulco, and F. Huici. ClickOS and
the Art of Network Function Virtualization. In NSDI,
2014.

[33] J. Naous, G. Gibb, S. Bolouki, and N. McKeown.
NetFPGA: Reusable Router Architecture for Exper-
imental Research. In Workshop on Programmable
routers for extensible services of tomorrow, 2008.

[34] R. Niranjan Mysore, G. Porter, and A. Vahdat. Fas-
Trak: Enabling Express Lanes in Multi-Tenant Data
Centers. In CoNEXT, 2013.

[35] OpenVSwitch. Using Open vSwitch with DPDK.
https://github.com/openvswitch/
ovs/blob/master/INSTALL.DPDK.md,
2016.

[36] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite:
A Unified I/O Buffering and Caching System. ACM
Transactions on Computer Systems (TOCS), 18(1):37–
66, 2000.

[37] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Rat-
nasamy, L. Rizzo, and S. Shenker. E2: A Framework
for NFV Applications. In SOSP, 2015.

[38] J. Pasquale, E. Anderson, and P. K. Muller. Con-
tainer Shipping: Operating System Support for I/O-
intensive Applications. Computer, 27(3):84–93,
1994.

[39] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky,
and G. C. Hunt. Rethinking the Library OS from the
Top Down. In ASPLOS, 2011.

[40] K. K. Ram, A. L. Cox, M. Chadha, S. Rixner, T. W.
Barr, R. Smith, and S. Rixner. Hyper-Switch: A
Scalable Software Virtual Switching Architecture. In
USENIX ATC, 2013.

[41] Riverbed. Mazu Networks. http://goo.gl/
Y6aeEg, 2011.

[42] M. Roesch et al. Snort: Lightweight Intrusion Detec-
tion for Networks. In LISA, 1999.

[43] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and
G. Shi. Design and Implementation of a Consolidated
Middlebox Architecture. In NSDI, 2012.

[44] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making Middleboxes
Someone Else’s Problem: Network Processing as a
Cloud Service. In SIGCOMM, 2012.

[45] A. Sivaraman, M. Budiu, A. Cheung, C. Kim, S. Lick-
ing, G. Varghese, H. Balakrishnan, M. Alizadeh, and
N. McKeown. Packet Transactions: High-level Pro-
gramming for Line-Rate Switches. In SIGCOMM,
2016.

[46] H. Song. Protocol-Oblivious Forwarding: Unleash
the Power of SDN Through a Future-Proof Forward-
ing Plane. In HotSDN, 2013.

[47] R. Stoenescu, V. A. Olteanu, M. Popovici, M. Ahmed,
J. Martins, R. Bifulco, F. Manco, F. Huici, G. Smarag-
dakis, M. Handley, and C. Raiciu. In-Net: In-Network
Processing for the Masses. In EuroSys, 2015.

[48] L. Torvalds. Linux Page Fault Daemon Performance.
Google+ https://plus.google.com/
+LinusTorvalds/posts/YDKRFDwHwr6,
2014.

216 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/openvswitch/ovs/blob/master/INSTALL.DPDK.md
https://github.com/openvswitch/ovs/blob/master/INSTALL.DPDK.md
http://goo.gl/Y6aeEg
http://goo.gl/Y6aeEg
https://plus.google.com/+LinusTorvalds/posts/YDKRFDwHwr6
https://plus.google.com/+LinusTorvalds/posts/YDKRFDwHwr6

	Introduction
	Background and Motivation
	Building NFs
	Running NFs

	Design
	Programming Abstractions
	Execution Environment

	Implementation
	Two Example NFs
	Operator Interface
	Implementation of Abstractions
	Execution Environment

	Evaluation
	Setup
	Building NFs
	Framework Overheads
	Generality of Programming Abstractions

	Execution Environment
	Cost of Isolation: Single NF
	Cost of Isolation: NF Chains

	Related Work
	Conclusion
	Acknowledgment

