
Silo: Predictable Message Completion Time in the Cloud

Keon Jang† Justine Sherry? Hitesh Ballani† Toby Moncaster‡

†Microsoft Research ?UC Berkeley ‡University of Cambridge

September, 2013

Technical Report
MSR-TR-2013-95

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

Abstract
Many cloud applications need predictable completion of
application tasks. To achieve this, they require pre-
dictable completion time for network messages. We iden-
tify three key requirements for such predictability: guar-
anteed network bandwidth, guaranteed per-packet delay
and guaranteed burst allowance. We present Silo, a net-
work architecture for public cloud datacenters that offers
these guarantees. Silo leverages the fact that guaran-
teed bandwidth and delay are tightly coupled: controlling
tenant bandwidth yields deterministic bounds on network
queuing delay. Silo builds upon network calculus to deter-
mine how tenants with competing requirements can coex-
ist, using a novel packet pacing mechanism to ensure the
requirements are met.

We have implemented a Silo prototype comprising a
VM placement manager and a Windows Hyper-V network
driver. Silo does not require any changes to applications,
VMs or network switches. We use testbed experiments and
large scale simulations to show that Silo can ensure pre-
dictable message latency for competing applications in
cloud datacenters.

1 Introduction
Many cloud applications are distributed in nature; they
comprise services that communicate across the network
to generate a response. Often, the slowest service dic-
tates user perceived performance [1,2]. To achieve pre-
dictable performance, such applications need predictable
tail completion time for network messages. However, the
consequent network requirements vary with the applica-
tion. For example, Online Data-Intensive (OLDI) appli-
cations like web search and online retail [1,2], and real-
time analytics [3–5] generate small messages whose com-
pletion time is sensitive to both packet delay and avail-
able network bandwidth. For large message applications
like data-parallel jobs [6–8], message completion time de-
pends only on network bandwidth.

Today’s public cloud platforms are agnostic to these
network demands. While tenants can rent virtual ma-
chines (VMs) with varying amount of dedicated CPU
cores, memory and storage, their network performance is
not guaranteed. Studies of major cloud providers have
found that both the bandwidth and packet delay across
their internal network can vary by an order of magni-

tude [9–12]. This is recognized as a key barrier to public
cloud adoption [13], especially for OLDI applications.

We thus try to answer the question: What network
knobs can the cloud provider expose such that applica-
tions can achieve predictable message completion time?
We want any tenant to be able to independently answer–
“What is the maximum time within which my message
will be delivered to its destination?”. We identify three
key requirements to achieve this, (i) guaranteed band-
width; (ii) guaranteed per-packet delay; and (iii) guaran-
teed burst allowance so that applications can send mul-
tipacket traffic bursts at a higher rate. Of course, not all
applications require all three guarantees; MapReduce jobs
only need high bandwidth guarantees with no packet de-
lay bounds and no bursts, while a web-service may need
low bandwidth yet low delay bounds and large bursts.
Some applications may not need any guarantees.

While many recent efforts target cloud network perfor-
mance, none meets all these requirements. Guarantee-
ing tenant network bandwidth [14–20], by itself, does not
cater to bursty applications with small messages. Many
recent solutions target low network latency by achiev-
ing small network queues [21–23] or accounting for flow
deadlines [24–26]. However, they are tailored for pri-
vate data centers where tenants are cooperative and inter-
tenant performance isolation is not essential. By contrast,
public clouds involve many untrusted and competing ten-
ants, so the assumptions underlying these solutions do not
hold. Further, we show that in such multi-tenant settings,
low queueing delay is insufficient to ensure predictable
message completion. Overall, none of these efforts allow
tenants to determine the end-to-end completion time of
their messages.

Our network requirements pose a few challenges.
Guaranteeing per-packet delay is particularly difficult be-
cause delay is an end-to-end property; it comprises stack
delay at the end hosts and queuing delay inside the net-
work. In both cases, today’s design targets high utiliza-
tion at the expense of delay. Queues at the end host and
inside the network ensure good utilization but result in
poor tail latency. A further challenge is that guaranteed
packet delay is at odds with the guaranteed burst require-
ment. Allowing some applications to send traffic bursts
can increase delay experienced by others; synchronized
bursts can even cause packet loss.

In this paper, we present Silo, a network architecture

1

for public cloud data centers. Silo ensures predictable
message completion time by giving tenants guaranteed
bandwidth, delay and burst allowances for traffic between
their VMs. A simple observation enables these guaran-
tees: traffic that is strictly paced at the rate guaranteed
to VMs yields a deterministic upper bound for network
queueing. The queuing bound is straightforward for a sin-
gle hop [27], but is challenging to determine across mul-
tiple hops [28–30]. Thus, bandwidth guarantees, needed
for isolating tenant performance anyway, make it easier
to bound packet delay at both the end host and inside the
network.

Silo relies on two key mechanisms. First, a VM place-
ment algorithm accounts for the network requirements of
tenants. It maps the multi-dimensional network guaran-
tees to two simple constraints regarding switch queues.
We use techniques from network calculus to check these
constraints. Second, we design a software packet pacing
mechanism that employs per VM-pair rate limiting. This,
combined with packet level scheduling in the hypervisor,
ensures that the maximum end host queuing for a packet
is independent of the number of competing flows. The
lack of real-time scheduling at end hosts means our delay
guarantees are “soft”; they hold at the 99th percentile, not
the maximum.

An important feature of Silo’s design is ease of deploy-
ment. It does not require changes to network switches,
tenant applications or guest OSes. We have implemented
a Silo prototype comprising a VM placement manager
and a kernel driver in the Windows Hyper-V network
stack. The network driver uses “void packets” to pace
traffic at sub-microsecond granularity. It can still saturate
10Gbps links with low CPU overhead. Through testbed
experiments and simulations, we show that Silo results in
low and predictable message completion time even in the
presence of competing traffic. It improves message la-
tency by 22x at the 99th percentile (and 2.5x at the 95th)
as compared to DCTCP [21] and HULL [22]. We also
find that, by carefully placing VMs, Silo can actually im-
prove cloud utilization, thus allowing the provider to ac-
cept more tenants.

2 Network Requirements
In this section we argue why predictable message latency
is important for cloud applications, and derive key net-

work requirements for such predictability. Note that a
message’s “latency” is its end-to-end completion time; for
packets, we use “delay”.

2.1 Predictable message latency

Many cloud applications share two common features.
First, they rely on distributed execution. For OLDI ap-
plications, answering a single query involves tens or hun-
dreds of workers that exchange small messages across
the network [1,2].1 Data analytics jobs also run on a
distributed set of machines that shuffle messages across
the cloud network. Messaging latency is a significant
fraction of a job’s completion time (33% for Facebook’s
Hadoop cluster [31]). Second, they need timely comple-
tion of jobs. For example, OLDI applications need to
serve end user requests within a time budget, typically
200-300ms [21]. Similarly, users want their data analytics
jobs finished in a timely fashion which, given today’s pay-
per-hour cloud pricing model, also ensures predictable job
cost [13,32].

Thus, to achieve predictable performance, such appli-
cations require predictable message latency. This holds
for OLDI applications [24,26], data analytics [33] and
many other cloud applications like HPC, high frequency
trading, monitoring services, etc. [34]. Bounded message
latency can even simplify application design. For exam-
ple, in the case of web search, if a worker that has to re-
spond to a query in 20ms knows that the response mes-
sage will take at most 4ms, it can use 16ms to process
the query. Instead, applications today are forced to use
conservative latency estimates.

2.2 Deconstructing message latency

The latency for a message comprises the time to trans-
mit the packets into the network and the time for the last
packet to propagate to the destination. This simple model
assumes an ideal transport protocol and excludes end host
stack delay (accounted for in §3.1). Formally,

1We use the term “message” instead of the more commonly used
“flow” since cloud applications often multiplex many messages onto a
single flow (i.e. transport connection).

2

B
an

d
w

id
th

se
n

si
ti

vi
ty

Delay sensitivity
Low

High

High

X X

X

Data-parallel

HPC, High freq.
trading

Monitoring apps,
simple websites

X

OLDI

Figure 1: Diverse network demands of cloud applications.

Msg. Latency ≈ Transmission delay + In-network delay

≈ Message size
Network bandwidth

+ In-network delay

For large messages, the latency is dominated by
the transmission delay component. This applies to
data-parallel applications [6,7] which are thus termed
“bandwidth-sensitive”. By contrast, applications that
send sporadic single packet messages are “delay-
sensitive” as the in-network delay component dominates.
Examples include monitoring services and simple web
services. Between these two extremes are applications
that mostly generate small messages. For example, the
network traffic for a typical OLDI application like web
search is dominated by 1.6–50KB messages [21,24].
While traditionally described as delay-sensitive only, the
latency for such small messages actually depends both on
the available bandwidth and the in-network delay. The
root cause for this is the small bandwidth delay product in
datacenters. For example, on a 10 Gbps link with 40 flows
(median concurrent flows for search [21]), the fair share
for each flow is 250 Mbps. With a typical datacenter RTT
of 200µs, the bandwidth delay product is a mere 6KB!
TCP models show that for a TCP flow to reach a conges-
tion window of size w, its size needs to exceed 3w [35].
Hence, in the example above, any message exceeding 18
KB will be bandwidth limited. And the situation worsens
if more flows compete at the link. Figure 1 summarizes
these arguments; some cloud applications are sensitive to
available bandwidth, some are sensitive to in-network de-
lay, some to both.

Thus, to achieve predictable message latency, a gen-
eral cloud application requires: Requirement 1. guaran-
teed network bandwidth and Requirement 2. guaranteed
per-packet delay. The former results in a deterministic
transmission delay component for a message. The lat-
ter bounds the in-network delay component but is only

needed by delay-sensitive applications.

2.2.1 Burstiness requirement
For applications that are sensitive to network bandwidth,
the instantaneous bandwidth requirement can vary. This is
especially true for OLDI applications. For example, let’s
imagine an application with user requests arriving every
a msec. Each request results in a VM generating a single
message of sizeM . Thus, the average bandwidth required
by the application is M

a . However, the application may
actually be required to serve each user request earlier, say
within d msec (d < a). Hence, the instantaneous band-
width required by each VM is M

d which ensures that each
message finishes by its deadline. Of course, guarantee-
ing this much bandwidth is possible but inefficient since
the average bandwidth required by the application is still
M
a . This motivates the third requirement for predictable

message latency.
Requirement 3. Burst allowance. Some applications

need to be able to send short traffic bursts. To accommo-
date this, we borrow the notion of burstiness from token
buckets. VMs that have not been using their guaranteed
bandwidth should be allowed to burst a few packets at a
higher rate.

2.3 Today’s public cloud
Many recent studies look at the performance across the
internal network in public cloud datacenters. Measure-
ments show that the VM-to-VM network bandwidth can
vary by a factor of five or more [9,10,36,37]. Since the
underlying network is shared, a VM’s bandwidth depends
on its placement, the network load and even the nature of
competing traffic (UDP/TCP).

Packet delay across the cloud network shows even more
variability [11,12,36]. This is because delay is an addi-
tive, end-to-end property; the delay for a packet is the
sum of delay at the guest OS, the end host hypervisor
and NIC, and delay inside the network. Studies show
that all these factors contribute to packet delay variabil-
ity. VM scheduling delay inflates the tail packet delay by
2x [11], hypervisor and NIC delay contributes a 4-6x in-
flation, while in-network delay increases it by 10x [12].

3 Challenges and Design Insights
Of the three network requirements, guaranteeing per-
packet delay is particularly challenging because all com-

3

0.0

0.1

1.0

10.0

100.0

1000.0

0 1 2 4 8 16

R
o

u
d

 t
ri

p
 t

im
e

(m
s)

Number of background flows

1 Queue (LSO) 1 Queue

8 Queue (LSO) SILO Pacer

Figure 2: RTT between the hypervisor (vswitch-to-
vswitch) with background flows.

ponents of the end-to-end path can add delay. Given our
focus on IaaS clouds where tenants can deploy arbitrary
OSes, we restrict our delay guarantees to the part of the
path the cloud provider controls, i.e. the hypervisor and
the network. In this section we highlight the challenges
posed by these delay components, and provide intuition
regarding the feasibility of guaranteeing packet delay.

3.1 End host delay
Reducing packet delay at the end host is an active area
of research. In virtualized settings, such delay can be at-
tributed to two main factors. The first is VM schedul-
ing delay, which is significant when multiple VMs are
mapped to the same CPU core. We focus on scenar-
ios without such CPU core oversubscription which avoids
VM scheduling delay. This holds for the majority of VM
classes offered by cloud providers today; for example,
only the micro and small EC2 VMs have CPU oversub-
scription. Further, recent VM schedulers like vSched [38]
and vSlicer [39] can achieve low VM scheduling delay
even with CPU oversubscription.

The second factor is queuing delay at the NIC driver.
This results from the fact that the driver has one queue
corresponding to each hardware queue at the NIC. So
if the NIC has a single queue, a small message can get
queued behind large messages from other VMs. The use
of batching techniques like large send offload (LSO) to
reduce CPU load for network I/O exacerbates this by al-
lowing VMs to send large batches of packets to the driver
(typically 64KB).

To quantify this problem, we conduct a simple exper-
iment involving two physical servers; each has 10 Gbps
Ethernet interfaces and two hexa core CPUs (Intel E5-

2665, 2.66Ghz). Figure 2 shows the 99th percentile RTT
for 1KB ping-pong messages between the hypervisors on
each server. When there is no competing traffic, the RTT
is 100µs. However, when background flows increase,
the RTT grows beyond 10ms (labeled “1 Queue (LSO)”).
This is due to queuing at the NIC driver which increases
with the number of competing flows. When the number
of NIC queues is increased to 8, the RTT is stable until
8 background flows and then increases as multiple flows
use the same queue. As NICs typically support a limited
number of hardware queues, simply ensuring that flows
are mapped to separate queues is not feasible. And dis-
abling LSO does not solve the problem either. We mea-
sured the packet delay with LSO disabled (“1 Queue”).
This increases the CPU utilization such that we cannot
even saturate the 10Gbps link which, in turn, increases
the queuing delay as packets are drained slower.

To reduce driver queuing delay, we use per VM-pair
queues at the hypervisor. Since each VM has a band-
width guarantee, each queue is serviced at a guaranteed
rate, and the amount of time any bandwidth-compliant
packet spends in this hypervisor queue is bounded. We
also ensure that a fixed number of packets are outstand-
ing at the driver, thus bounding the delay at the driver
queue. These two mechanisms ensure that the amount of
queuing a packet can incur at the end host is independent
of the number of competing flows. While we detail this
pacing technique in §4.3.1, Figure 2 shows that it ensures
the RTT is always less than 400µs. Hence, it is feasible
to offer one-way packet delay guarantees as low as 200
µs, which is reasonable for OLDI applications. Note that
due to the lack of real-time network scheduling support,
such delay guarantees are only statistical guarantees based
on empirical analysis; thus, we bound the 99th percentile
packet delay rather than the worst case.

3.2 In-network delay
In-network delay comprises the propagation, forwarding
and queuing delay across the network. In datacenters,
the propagation and forwarding delay is negligible, and
queuing delay dominates. TCP-like protocols drive the
network to congestion by filling up queues. This leads
to high and variable in-network delay. To circumvent
this, HULL [22] operates the network below capacity and
achieves tiny queues. While an elegant solution, it does
not provide packet delay and bandwidth guarantees.

4

VM 1 VM N

Bandwidth B

B

Each VM has an average

bandwidth of B. But it can

burst S bytes at a rate of Bmax

Virtual Switch Tenant with N VMs

Virtual token bucket

controls VM’s burstiness

Delay d/2

Figure 3: A tenant’s virtual network captures its network
guarantees. It combines the hose model with per-VM vir-
tual token buckets.

We adopt a different tact to bound in-network delay. As
shown in §2.2, cloud applications require guaranteed net-
work bandwidth for predictable message latency. Ensur-
ing that a VM’s traffic is paced at the rate guaranteed to
it, in turn yields a deterministic upper bound for network
queuing [28,30]. For example, consider n flows bottle-
necked at a network link. Each flow is guaranteed some
bandwidth and can only burst one packet at a time. As-
suming the total bandwidth guaranteed across all flows is
less than the link capacity, the maximum queue build up at
the link is n packets. This happens when a packet for each
flow arrives at the link at exactly the same time. In §4.2,
we build upon this simple observation and use network
calculus to quantify the maximum queuing across a multi-
hop network.

Overall, by controlling both the end host and in-
network delay, we can ensure a tenant’s end-to-end packet
delay guarantees can be met.

4 Design
We present Silo, an architecture for multi-tenant datacen-
ters that ensures tenants achieve predictable message la-
tency. To this end, VMs are coupled with guaranteed
bandwidth, packet delay and burst allowance.

4.1 Silo’s network guarantees
With Silo, tenants can imagine their VMs as being con-
nected by a private “virtual” network, as shown in Fig-
ure 3. A virtual link of capacity B and propagation de-
lay d

2 connects each VM to a virtual switch. Further, each
VM’s traffic is shaped by a virtual token bucket with aver-
age bandwidthB and size S. Thus, VMs get the following
network guarantees–

(i). a VM can send and receive traffic at a maximum
rate of B Mbps,

(ii). a VM that has under-utilized its bandwidth guar-
antee is allowed to send a burst of at most S bytes,

(iii). any bandwidth-compliant packet is guaranteed to
be delivered from the source hypervisor to the destination
hypervisor within d µs.

The network capabilities of a VM are thus captured us-
ing three parameters– {B, S, d}. Just as today’s cloud
providers offer a limited classes of VMs (small, medium,
etc.) with varying compute and memory capacity, we ex-
pect providers will offer a few classes with varying net-
work guarantees. Some tenants may only need the band-
width guarantees. In §4.3.2, we show that Silo can also
accommodate tenants without any network guarantees.

The precise network guarantees represent a trade-off
between how useful they are for tenants and how practical
they are for providers. We have chosen the semantics of
the guarantees to balance this trade-off. As with past pro-
posals [16,18,40], our VM bandwidth guarantee follows
the hose model, i.e. the bandwidth for a flow is limited by
the guarantee of both the sender and receiver VM. So if a
tenant’s VMs are guaranteed bandwidth B, and N VMs
all send traffic to the same destination VM, each sender
would achieve a bandwidth of B

N (since the destination
VM becomes the bottleneck). By contrast, each VM gets
an aggregate burst guarantee. With such a guarantee, all N
VMs are allowed to send a simulataneous burst of S bytes
to the same destination. This is motivated by the observa-
tion that many OLDI-like applications employ a partition
aggregate workflow that results in all-to-one traffic pat-
tern [21].

However, allowing VMs to send traffic bursts can re-
sult in high and variable packet delay for VMs of other
tenants. Synchronized bursts can even overflow switch
buffers and cause packet loss. While Silo carefully places
tenants VMs to ensure switch buffers can absorb the
bursts, we also control the maximum bandwidth at which
a burst is sent. This maximum rate (Bmax) is exposed to
the tenant. In our experiments, Bmax is 1-2Gbps.

Overall, these network knobs allow tenants to deter-
mine their message latency. Consider a VM, that has not
used up its burst quota, sends a message of size M (≤ S)
bytes. The message is guaranteed to be delivered to its
destination in less than (M

Bmax
+ d) µs. If M > S,

message latency is less than (S
Bmax

+ M−S
B + d). To

achieve these guarantees, Silo relies on two key mecha-

5

nisms: network-aware VM placement and packet pacing
at end host hypervisors. We detail these mechanisms be-
low.

4.2 VM Placement
Silo includes a placement manager that, given a tenant
request, places its VMs at servers in the datacenter such
their network guarantees requirements can be met. If the
guarantees cannot be met, the request is rejected.

4.2.1 Placement overview
Placement of VMs in today’s datacenters typically fo-
cusses on non-network resources like CPU cores and
memory. Recent efforts propose algorithms to place
VMs such that their bandwidth guarantees can also be
met [15,16]. Silo expands VM network guarantees to in-
clude per-packet delay and burst allowance which is criti-
cal for OLDI-like applications. Thus, the placement algo-
rithm needs to account for multiple network constraints.
The main insight behind our approach is that each VM’s
bandwidth guarantee yields an upper bound for the rate
at which it can send traffic. This allows us to quantify the
queue bound for any switch port, i.e. the maximum queu-
ing delay that can occur at the port. Further, we can also
determine a port’s queue capacity, the maximum possi-
ble queue delay before packets are dropped. For example,
a 10Gbps port with a 312KB buffer has a ≈250 µs queue
capacity.

The key novelty in the placement algorithm is the map-
ping of multi-dimensional network constraints to two sim-
ple queueing constraints at intervening switches. These
constraints then dictate the placement of VMs. To en-
sure the network has enough capacity to accommodate the
bandwidth guarantees of VMs and absorb all bursts, we
need to ensure that at all switch ports, the queue bound
does not exceed the queue capacity. This is the first con-
straint. As we explain later, the packet delay guarantees
lead to the second queuing constraint.

In the following sections, we detail our placement algo-
rithm. We assume a multi-rooted tree-like network topol-
ogy prevalent in today’s datacenters. Such topologies are
hierarchical; servers are arranged in racks that are, in turn,
grouped into pods. Each server has a few slots where VMs
can be placed. We also assume that if the topology offers
multiple paths between VMs, the underlying routing pro-
tocol load balances traffic across them. This assumption

B
yt

es

Time

S

1500

A(t)
 = Bt + S = AB,S

B
A’(t)

Bmax

B
yt

es

Time

S

A(t)

S(t)

q

p

(a) (b)

Figure 4: (a) Two arrival curves. (b) An arrival curve, A(t)
and a switch’s service curve, S(t).

.
holds for fat-tree topologies [41,42] that use multi-pathing
mechanisms like ECMP, VLB [41] and Hedera [43].

4.2.2 Queue bounds
We begin by describing how we use basic network calcu-
lus concepts [28,44] to determine the queue bounds for
network switches. This serves as a building block for
Silo’s placement algorithm.

Source Characterization. Traffic from a VM with band-
width guarantee B and burst size S is described by a ar-
rival curveA(t) =Bt+S, which provides an upper bound
for traffic generated over a period of time. We will refer
to this curve as AB,S . This arrival curve is shown in fig-
ure 4(a) and assumes that the VM can send a burst of S
bytes instantaneously. While we use this simple function
for exposition, our implementation uses a more involved
arrival curve (labelled A′ in the figure) that captures the
fact that a VM’s burst rate is limited to Bmax.

Calculating queue bound. We now show how arrival
curves can be used to determine queue bounds for net-
work switches. Just as traffic arriving at a switch is char-
acterized by its arrival curve, each switch port is asso-
ciated with a service curve that characterizes the rate at
which it can serve traffic. Figure 4(b) illustrates how
these two functions can be used to calculate the maxi-
mum queuing at the port or its queue bound. We start
at t = 0 when the switch’s queue is empty: initially the
arrival curve A(t) is larger than the service curve S(t) be-
cause of initial burst of traffic; so the queue starts to build
up. However, as time reaches t = p, the aggregate traf-
fic that the switch can serve exceeds the aggregate traffic
that can arrive. This means that at some point during the
interval (0, p] the queue must have emptied at least once.
The horizontal distance between the curves is the time for
which packets are queued. Hence, the port’s queue bound
is q, the maximum horizontal distance between the curves

6

S1 S2

f1

f2
f2

f1

Figure 5: Switch S1 causes packet bunching for flow f1.
.

(i.e., the largest q such that S(t) = A(t− q)).
This allows us to calculate the queue bound at a switch

directly receiving traffic from a VM. Below we describe
how arrival curves can be added (when traffic from dif-
ferent VMs merges at a switch) and propagated across
switches to determine the queuing at any network switch.

Adding arrival curves. Arrival curves for VMs can be
added to generate an aggregate arrival curve. For ex-
ample, adding arrival curves AB1,S1 and AB2,S2 yields
AB1+B2,S1+S2. However, as explained below, the seman-
tics of our guarantees allow us to generate a tighter arrival
curve when adding curves for VMs belonging to the same
tenant.

Consider a tenant with N VMs, each with an average
bandwidth B and burst allowance S. The arrival curve
for each VM’s traffic is AB,S . Imagine a network link
that connects the tenant’s VMs such that m VMs are on
the left of the link and the remaining (N −m) are on the
right. We want to add the m arrival curves for the VMs
on the left to generate an aggregate curve for all traffic
traversing the link from left to right. Our choice of hose-
model bandwidth guarantees implies that the total band-
width guaranteed for the tenant across the link is min(m,
N −m)*B [16]. By contrast, each VM is allowed to send
an aggregate burst of S bytes, even if all VMs send to the
same destination. So the maximum burst of tenant traffic
across the link from left to right is m ∗ S bytes. Thus, in-
stead of AmB, mS , the aggregate arrival curve is actually
Amin(m,N−m)∗B, mS .

Propagating arrival curves. After traffic egresses a
switch, it may no longer be shaped according to the prop-
erties it arrived at the switch with. For example, consider
Figure 5: flow f1 has a sending rate of C/2 (link capac-
ity is C), and flow f2 has a sending rate of C/4. Both
have a burst size of one packet; so f1’s arrival function
is AC

2 ,1 and f2’s is AC
4 ,1. At switch S1, the first packet

of both f1 and f2 arrive simultaneously; the packet from
f2 is served first followed by the packet from f1. Imme-

diately after this, a packet from f1 arrives and is served.
This sequence then repeats itself. Thus, f1’s packets are
bunched due to queueing at switch S1 such that after leav-
ing the switch, f1’s arrival function is AC

2 ,2. Note that a
flow’s average bandwidth cannot change with queueing,
only the burst size is impacted.

Kurose [28] proved an upper bound for the burst size
of traffic egressing a switch. Consider the value p from
Fig. 4– the maximum interval over which the queue must
be emptied at least once. In the worst case, every packet
sent by a VM over the interval [0, p] may be bunched to-
gether and forwarded as one burst. However, this anal-
ysis makes placement decisions computationally unten-
able; the arrival curve for egress traffic depends on the
port’s p value which, in turn, depends on other flows us-
ing the port. To ensure that the new tenant’s VMs do not
cause the guarantees of existing tenants to be violated, we
potentially would need to recalculate the queue bound for
every switch port in the datacenter for every new place-
ment.

Instead, we ensure that the p value on a port can never
exceed its queue capacity c and then use the queue ca-
pacity to determine a (looser) upper bound on the egress
traffic’s burst size. In the worst case, every packet sent
by a VM over the interval [0, c] may be forwarded as one
burst. Since a VM with arrival curve AB,S can send at
most B.c + S bytes in time c, the egress traffic’s arrival
curve is AB,(B.c+S). Since a port’s queue capacity is a
static value, a valid addition of new VMs cannot cause
the guarantees of already existing VMs to be violated.

4.2.3 Placement algorithm
We have designed a placement algorithm that uses a
greedy first-fit heuristic to place VMs on servers. It can
accommodate tenants that need all network guarantees as
well as those that only need guaranteed bandwidth. We
first describe how we map the network guarantees to two
simple queuing constraints at switches. These constraints
thus characterize a valid VM placement and guide the al-
gorithm.

Valid placement. Past placement algorithms that ac-
count for VM bandwidth guarantees focus on ensuring
that the bandwidth for all traffic that may traverse a net-
work link is less than the link’s capacity. With Silo, we
further need to account for the fact that VMs can send traf-
fic bursts at a rate that may temporarily exceed a link’s ca-

7

pacity. The buffer at switches needs to absorb this excess
traffic. To ensure there is enough capacity to accommo-
date the bandwidth guarantees of VMs and absorb bursts,
we must make sure that switch buffers never overflow.
Thus, for each switch port between the tenant’s VMs, the
maximum queue buildup (queue bound) should be less
than the buffer size (queue capacity). Formally, if V is
the set of VMs being placed and Path(i, j) is the set of
ports between VMs i and j, the first constraint is
Q-boundp ≤ Q-capacityp, ∀p ∈ Path(i, j), i, j ∈ V

For packet delay guarantees, we must ensure that for
each pair of VMs belonging to the tenant, the sum of
queue bounds across the path between them should be
less than the guarantee. However, a port’s queue bound
changes as tenants are added and removed which compli-
cates the placement. Instead, we use a port’s queue ca-
pacity, which always exceeds its queue bound, to check
delay guarantees. Consider a tenant whose packets, af-
ter accounting for end host delay, should be delayed by at
most d′. Thus, the second constraint is∑

p∈Path(i,j)

Q-capacityp ≤ d′, ∀i, j ∈ V

Given that today’s switches are shallow buffered with
low queue capacity, this approximation is not too con-
servative. It also makes the placement of delay sensitive
tenants much simpler. For example, say delay-sensitive
tenants get a 1ms packet delay guarantee and each switch
port has a 250µs queue capacity. Assuming end host de-
lay is at most 200µs, the in-network delay for any packet
should not exceed 800µs. Thus, VMs for any such tenant
cannot be placed more than three hops apart.

Finding valid placements. A request can have many
valid placements. Given the oversubscribed nature of
typical datacenter networks, we adopt the following op-
timization goal– find the placement that minimizes the
“level” of network links that may carry the tenant’s traf-
fic, thus preserving network capacity for future tenants.
Servers represent the lowest level of network hierarchy,
followed by racks, pods and the cluster.

The algorithm psuedo code is shown in Algorithm 4.1.
We first attempt to place all requested VMs at the same
server (lines 4–6). If the number of VMs exceeds the
empty VM slots on the server, we attempt to place all
VMs in the same rack. To do this, for each server in-
side the rack, we use the queuing constraints on the

Algorithm 4.1 Silo’s Placement Algorithm
1: Ensures: Placement for request with N VMs and {B, S, d}

network guarantees.
2: Requires: Topology tree T with pods, racks and hosts.

Pre-calculated state includes delayQuota[d, l] which is the
maximum packet delay at each link for a request with e2e
delay guarantee d that is allocated at level l. We also have
serverUpDelay and serverDownDelay for servers, and
similarly for racks and pods.

3:
4: if N < VMSlotsPerServer then
5: return AllocOnServer(request)
6: end if
7:
8: for each l ∈ [0, T.height - 1] do
9: for each p ∈ T.pods do

10: vmsPerPod = 0
11: for each r ∈ p.racks do
12: vmsPerRack = 0
13: for each s ∈ r.servers do
14: v = CalcValidAllocations(s.emptySlots,N, request,
15: s.upLink, serverUpDelay[d, l], serverDownDelay[d, l],
16: delayQuota[d, l])
17: vmsPerRack += v
18: if vmsPerRack >= N and l==0 then
19: return AllocOnRack(r, request)
20: end if
21: end for
22: if l > 0 then
23: v = CalcValidAllocations(vmsPerRack,N, request,
24: r.UpLink, rackUpDelay[d, l], rackDownDelay[d, l],
25: delayQuota[d, l])
26: vmsPerPod += v
27: if v >= N and l==1 then
28: AllocOnPod(p, request)
29: end if
30: end if
31: end for
32: if l > 1 then
33: v = CalcValidAllocations(vmsPerPod,N, request,
34: p.UpLink, podUpDelay[d, l], podDownDelay[d, l],
35: delayQuota[d, l])
36: if v >= N and l==2 then AllocOnClus-

ter(request)
37: end if
38: end if
39: end for
40: end for
41: function CALCVALIDALLOCATIONS(k, N, request, uplink,

updelay, downdelay, delay)
42: for each m ∈ [k,1] do
43: if (uplink.GetMaxDelay(request, (N-m), N, upde-

lay) < delay and uplink.reverse.GetMaxDelay(request, m,
N, downdelay) < delay) then

44: return m
45: end if
46: end for
47: end function

8

B1, S B2, S BN, S

B, S

Bmax, 1

Traffic destined
to VM 1

Token bucket drains
at rate B with a max

burst of S bytes

Ensures VM’s traffic has
avg rate B, max rate Bmax,

and burst of S bytes

Ensures hose model
bandwidth guarantees

…….

Figure 6: VM traffic is paced using a hierarchy of token
buckets to ensure it conforms to network guarantees.

switch port connected to the server to determine the
number of VMs that can be placed at the server. The
CalcV alidAllocations function implements this logic.
This, in turn, relies on the GetMaxDelay function that
uses the traffic arrival and service curves to determine the
maximum queuing delay at a specific network port if the
requested VMs are placed a certain way. If all requested
VMs can be accommodated at servers within the rack, the
request is accepted (lines 18–20). Otherwise we consider
the next rack and so on. If the request cannot be placed in
a single rack, we attempt to place it in a pod and finally
across pods.

Other constraints. An important concern when plac-
ing VMs in today’s datacenters is fault tolerance. Our
placement algorithm can ensure that a tenant’s VMs are
placed across some number of fault domains. For exam-
ple, if each server is treated as a fault domain, we will
place the VMs across two or more servers. Beyond this,
VM placement may need to account for requirements re-
garding other resources and goals such as ease of mainte-
nance, reducing VM migrations, etc. Commercial place-
ment managers like Microsoft’s Virtual Machine Manager
model these as constraints and use heuristics for multi-
dimensional bin packing to place VMs [45]. Our queuing
constraints could be added to the set of constraints used
by such systems, though we defer an exploration to future
work.

4.3 End host pacing
Silo’s VM placement relies on tenant traffic conforming to
their bandwidth and burstiness specifications. To achieve
this, a pacer at the end host hypervisor paces traffic sent
by each VM. Figure 6 shows the hierarchy of token buck-
ets used by the pacer to enforce traffic conformance. At
the top is a set of token buckets, one each for traffic des-
tined to each of the other VMs belonging to the same

VM1
2Gbps

VM2
1Gbps

1

2

SILO
Pacer

1

2 2 2

1 1

V 1V 2V1VV VV12

V = Void packets

10GbE
NIC

…

Batch of 40 packets = 49.2 µs

2Gbps 5 packet interval

Figure 7: Use of void packets achieves packet level pacing
in the face of NIC burstiness

.
tenant. These are needed to enforce the hose model se-
mantics of guaranteed bandwidth; i.e. the actual band-
width guaranteed for traffic between a pair of VMs is con-
strained by both the sender and the destination. To enforce
the hose model, the pacers at the source and destination
hypervisor communicate with each other. They ensure
that traffic between them achieves the max-min fair band-
width it would have achieved across the virtual topology
shown in Figure 3. The pacer at the destination divides its
guaranteed bandwidth amongst all VMs sending traffic to
it and communicates a rate back to the sender. The pacer
at the source uses this to determine the rate at which it can
send traffic to any given VM such that the aggregate traf-
fic being sent by the VM does not exceed its guarantee;
i.e., it determines the rate Bi for the top token buckets in
Figure 6 such that

∑
Bi ≤ B. The rate Bi is also com-

municated to the destination hypervisor.
The bottom most token bucket ensures a VM’s traffic

rate can never exceed Bmax, even when sending a burst.
The middle token bucket ensures the average traffic rate
is limited to B and the maximum burst size is S bytes.

4.3.1 Packet level pacing
Ideally, the token buckets should be serviced at a per-
packet granularity. However, this precludes the use of I/O
batching techniques which results in high CPU overhead
and reduces throughput (as shown in Figure 2). One solu-
tion is to implement the pacing at the NIC itself [22,46].
However, this requires hardware support. For ease of de-
ployment, we prefer a software solution.

To ensure acceptable CPU overhead for network I/O,
we must leverage I/O batching. In our prototype, we batch
50µs of data in transferring packets from the hypervisor to
the NIC. However, most NICs are bursty and will forward
the entire batch of packets back-to-back [22]. While our
placement analysis can model such behavior in the traffic
arrival curve, it can generate better placements when the
arrival curve is less bursty and packets conform to their

9

guarantees even at small time scales; for example, for a
VM with a 1Gbps bandwidth guarantee, full-sized packets
(1.5KB) should only be released every 12µs.

In order to retain the high throughput and low overhead
offered by I/O batching while still pacing packets at sub-
microsecond timescales, we use a novel technique called
“void packets” to control the spacing between data pack-
ets forwarded by the NIC. A void packet is a packet that
will be forwarded by the NIC but discarded by the first
switch it encounters. This can be achieved, for example,
by setting the packet’s destination MAC address the same
as the source MAC. Figure 7 illustrates how we use void
packets; the link capacity is 10Gbps and VM1 is guar-
anteed 2Gbps, so every fifth packet sent to the NIC be-
longs to VM1. While the NIC forwards the entire batch of
packets as is, all void packets are dropped by the first hop
switch, thus generating a correctly paced packet stream.
The minimum size of a void packet, including the Ether-
net frame, is 84 bytes. So, at 10Gbps, we can achieve an
inter-packet spacing as low as 68ns.

4.3.2 Tenants without guarantees
Silo leverages two level priority forwarding in switches
to support tenants without any network guarantees. “Best
effort traffic” from such tenants is marked as low priority
while traffic from tenants with guarantees is high priority.
As long as switches ensure high priority traffic gets prece-
dence in both forwarding and buffer occupancy, our guar-
antees hold. Tenants without guarantees share the resid-
ual network capacity. The provider can ensure reasonable
performance for such tenants by limiting the fraction of
network bandwidth reserved for tenants with guarantees.

While Silo’s bandwidth guarantees mean that high net-
work utilization is not a primary design goal, such best
effort traffic can improve utilization. Further, many cloud
applications are indeed not network-limited, so they do
not need any network guarantees.

5 Implementation
Our software pacer is implemented as a Windows NDIS
filter driver [47]. The pacer driver sits between the
vswitch and the NIC driver, so we do not require any
modification to the NIC driver, applications or the guest
OS. At a high-level, the pacer has the following work-
flow. When applications send packets, they are passed to
our pacer by the vswitch. The pacer looks up the source

and destination addresses for the packets, and classifies
them into appropriate token buckets. We use virtual token
buckets, i.e. packets are not drained at the exact moment,
rather we timestamp when each packet needs to be sent
out. The pacer regularly pulls out packets from the token
bucket and sends them to the NIC driver.

At high link rates, I/O batching is essential to keep the
CPU overhead low. For accurate rate limiting with I/O
batching, we need two key properties. First is to keep the
gap between packets within a batch. We achieve this using
void packets (§4.3.1). Second is to schedule the next batch
of packets before NIC starts to idle. This is non-trivial,
especially since we want to keep the batch size small so
that packet queuing delay is limited. We borrow the idea
of soft-timers [48] and reuse existing interrupts as a timer
source. Our pacer does not use any separate timer, but
triggers sending the next batch of packets upon receiving
a DMA (Direct Memory Access) completion interrupt for
transmit packets.

We also implemented the placement algorithm de-
scribed in §4.2. To evaluate its performance, we measured
the time to place tenant requests in a datacenter with 100K
machines. Over 100K representative requests, the maxi-
mum time to place VMs is less than a second.

6 Evaluation
We evaluate Silo across three platforms: a small scale pro-
totype deployment, a medium scale packet-level simula-
tor and a datacenter scale flow-level simulator. The key
findings are as follows–

(i). We verify that our prototype can offer bandwidth,
delay and burstiness guarantees that, in turn, ensures pre-
dictable message latency. Through microbenchmarks, we
show that Silo’s pacer is able to saturate 10Gbps links
with low CPU overhead.

(ii). Through NS-2 simulations, we show that Silo
improves message latency as compared to state-of-the-
art solutions like DCTCP [21], HULL [22], and Okto-
pus [16]. Unlike Silo, none of these solutions can ensure
predictable message completion time.

(iii). We characterize the performance of our VM
placement algorithm and show that, as compared to
locality-aware VM placement, it can actually improve
cloud utilization and thus, accept more tenant requests.

Evaluation set-up. We model two classes of tenants.

10

Class I Class II
Communication pattern All to 1 All to all
Bandwidth (B) 0.25Gbps 2Gbps
Burst length (S) 15KB 1.5KB
Delay guarantee (d) 1000µs N/A
Burst rate (Bmax) 1Gbps N/A

Table 1: Tenant classes and their average network require-
ments.

Class-I contains delay-sensitive tenants that run a small
message application, and require bandwidth, delay and
burst guarantees. Each class-I tenant has an all-to-one
communication pattern such that all VMs simultaneously
send a message to the same receiver. This coarsely models
the workload for OLDI applications [21] and distributed
storage [49]. Class-II contains bandwidth-sensitive ten-
ants that run a large message application and only re-
quire bandwidth guarantees. Such tenants have an all-to-
all communication pattern, as is common for data paral-
lel applications. Unless otherwise specified, we gener-
ate the bandwidth and burst requirements from an expo-
nential distribution with the parameters in table 6. For
simulations, we use a multi-rooted tree topology for the
cloud network. The capacity of each network link is
10Gbps, the network has an oversubscription of 1:5. We
model commonly used shallow buffered switches [50]
with 312KB buffering per port (queue capacity is 250µs).
Each physical server has 8 VM slots.

6.1 Pacer microbenchmarks
We first evaluate our pacer implementation in terms of
throughput it can sustain and the CPU overhead. We use
physical servers equipped with one Intel X520 10GbE
NIC, and two Intel Xeon E5-2665 CPU (8 cores, 2.4Ghz).
There are two configuration that affects the pacer perfor-
mance (i) packet batch size and (ii) amount of outstand-
ing packets. After testing with various loads, we find
that a batch size of 50 µs, and 150 µs worth of out-
standing packets are enough to saturate the link capacity.
This means that bandwidth-compliant packets cannot be
queued at the end host for more than 150µs.

Figure 8 shows the CPU usage of the entire system by
varying the rate limit imposed by the pacer. The right
most bar is CPU usage when the pacer is disabled. The
red line represents the number of transmitted packets per
second, including void packets. We observe that to gen-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

P
ac

k
et

 r
at

e
(M

p
p

s)

C
P

U
 u

sa
g
e

(c
o

re
s)

Rate limit (Gbps)

CPU

Pkts/s

No pacing (10Gbps)

Figure 8: CPU usage of Silo pacer.

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Rate limit (Gbps)

Data

Void

Data (ideal)

Figure 9: Throughput achieved by Silo pacer.

erate only void packets at 10 Gbps, the pacer consumes
about 0.6 cores. As the actual data rate increases, the over-
all CPU utilization goes up to ≈2.1 cores worth of CPU
cycles at 9 Gbps. The reason is that at 9 Gbps, the pacer
needs to put 1/10th of MTU sized packets (150 bytes) be-
tween all the data packets, which results in high packet
rate. The graph shows that the overall CPU usage is pro-
portional to the packet rate shown in the red line. At full
line-rate of 10 Gbps, our pacer incurs less than 0.2 cores
worth of extra CPU cycles as compared to no pacing. In
Figure 9, we show the throughput for both void packets
and data packets. Except for 9 Gbps, we saturate 100%
of the link capacity, and achieve actual data rate at more
than 98% of the ideal rate.

6.2 Testbed experiments
We begin with a simple testbed experiment to understand
the benefits of Silo. We use six physical servers con-
nected to a single switch. The switch has 9 MB of buffer-
ing. There are two tenants, A and B, running a delay-
sensitive and a bandwidth-sensitive application respec-
tively. Each tenant has 40 workers across 5 servers (8
on each). On the last server, each tenant runs an aggre-
gator that requests messages from the workers. The ten-
ant A aggregator requests a 12 KB response from all 40
workers simultaneously at 20 ms interval. The tenant B
aggregator requests for 1 GB messages. For Silo, ten-

11

16.81

1.45

7.19
16.37

0.90

0.58

2.10

0.1

1.0

10.0

100.0

OKTO SILO TCP

M
ee

sa
g
e

la
te

n
cy

 (
m

s)

w/ Tenant B

w/o Tenant B

Estimate

Figure 10: Message latency for delay-sensitive applica-
tion (with competing bandwidth-sensitive application).

ant A is guaranteed {B=0.25Gbps, S=12 KB, d=1000µs}
with Bmax = 1Gbps, and tenant B is guaranteed {B =
9.75Gbps, S=1.5 KB, d=1000µs}.

Figure 10 shows the message latency at 99th percentile
for tenant A with and without tenant B. We compare
against TCP and Oktopus. Oktopus uses our pacer but
without bursts. For Silo, the tenant’s guarantees can be
used to determine an estimate for maximum message la-
tency. The figure shows that the 99th percentile message
latency with Silo is within the estimate, even when there is
tenant B traffic. Further, the aggregate throughput for ten-
ant B is 99.6% of its bandwidth guarantee. With Oktopus,
tenant A gets a bandwidth guarantee but is not allowed to
burst, so the message latency is higher. The messages take
16ms; this confirms that our pacer is fine-grained in that it
spreads out a 9 packet message (12 KB) over 16 ms. TCP,
however suffers from large queueing at the switch because
of tenant B traffic. The latency is as high as 7 ms, which
is the amount of buffer in the switch. Overall, this shows
that the Silo prototype can ensure predictable end-to-end
message latency.

6.3 Packet level simulations
We use NS-2 simulations to compare Silo against existing
solutions, and show that it delivers predictable message
latency. We begin with a couple of simple scenarios. The
simulation involves two tenants. Tenant A is a class-I ten-
ant running a small message application with an all-to-one
communication pattern such that all VMs simultaneously
send a 20KB message to the same receiver. The messages
are generated such that the receiving VM’s average band-
width requirement is 200 Mbps. Thus, the tenant is guar-
anteed: {B=200Mbps, S=20KB, d=500µs}. Tenant B is
a class-II tenant with all-to-all communication. The ten-
ant only needs bandwidth guarantees with no delay and

0.1

1

10

100

10 20 30 40 50

M
es

sa
g
e

L
at

en
cy

 (
m

s)

Number of VMs for tenant A

TCP HULL
SILO OKTO
OKTO+ EST

Figure 11: 95th percentile 20KB message latency for ten-
ant A with varying number of its VMs (i.e. flows).

0

5

10

15

20

25

0 10 20 30 40 50

M
es

sa
g
e

L
at

en
cy

 (
m

s)

Number of VMs for tenant B

TCP HULL
SILO OKTO
OKTO+ EST

Figure 12: 95th percentile 20KB message latency for ten-
ant A with varying tenant B workload.

burst requirements, so its guarantees are: {B=1250Mbps,
S=1.5KB, d=N/A} with Bmax=B.

We start with a simple setup involving only tenant A.
Figure 11 shows the 95th percentile message latency with
varying number of tenant A VMs. The “EST” lines show
the maximum latency estimate given the tenant’s guaran-
tees. We find that Silo ensures messages complete before
the estimate, even in the worst case (not shown in figure).
With Oktopus [16], tenant A is guaranteed bandwidth but
cannot burst traffic, so the latency is much higher. We
also extend Oktopus so that VMs can burst at line rate (la-
belled OKTO+). However, with a lot of VMs, the OKTO+
latency is also high and variable. Silo avoids this by con-
trolling the VM burst rate. HULL also results in high and
variable message latency; the workload results in severe
incast and even HULL’s phantom queues cannot avoid
buffer overflows. DCTCP performs slightly worse than
HULL, so we omit it in the graph.

Next we introduce tenant B. Tenant A has 10 VMs, and
we vary the number of VMs for tenant B, thus increas-

12

 0.1

 1

 10

 100

Silo TCP DCTCP Hull Okto Okto+

M
e
ss

a
g

e
 L

a
te

n
cy

 (
m

s) 99th
95th

Median

Figure 13: Message latency for class-I tenants.

ing the amount of network interference from a competing
application. Figure 12 shows that Silo, unlike other ap-
proaches, still ensures that message latency for tenant A
is predictable. HULL does not isolate competing work-
loads, leading to high message latency for tenant A when
there is a lot of competing traffic. Thus, low queuing,
by itself, does not ensure predictable message latency in
multi-tenant settings.

Non uniform workload: With Silo’s guarantees, a ten-
ant can independently determine the worst-case latency
for its messages, irrespective of other tenant workloads.
The use of controlled bursts ensures the latency is low
too. However, real applications often involve a single VM
sending many messages close together, in which case the
burst allowance does not benefit the latter messages. This
can be addressed by over provisioning the tenant’s band-
width and burst guarantees. For example, we repeated the
experiment above such that tenant A’s messages, instead
of arriving uniformly, had exponential inter-arrival times
with the same average rate as before. By guaranteeing the
tenant 40% more average bandwidth (280 Mbps) and dou-
bling its burst size (40KB), we ensure that 99% of mes-
sages can use the burst allowance. This preliminary result
suggests that Silo’s guarantees, beyond predictability, can
also ensure very low message latency for realistic work-
loads. We are investigating this further with application
traffic traces.

Simulations with many tenants. We now present re-
sults from simulations involving both class-I and class-II
tenants across 10 racks, each with 40 servers and 8 VMs
per server, resulting in 3200 VMs. The number of ten-
ants is such that 90% of VM slots are occupied. For each
run, Silo places VMs using its placement algorithm. For
Oktopus, we use the bandwidth-aware algorithm in [16].
For other solutions, we use a locality-aware algorithm that
places VMs as close to each other as possible. Figure 13
shows the latency for all small messages across 50 runs.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

C
D

F
(%

 o
f

te
n
a
n

ts
)

Messages with RTOs (%)

Silo
TCP

DCTCP
Okto

Figure 14: Class-I tenants whose messages incur RTOs.

 0

 20

 40

 60

 80

 100

Silo TCP DCTCP Hull Okto Okto+

O
u

tl
ie

r
Te

n
a
n
ts

 (
%

)

1x
2x
8x

Figure 15: Outlier tenants, i.e. tenants whose 99th per-
centile message latency exceeds the latency estimate.

Silo ensures low message latency even at the 99th per-
centile while all other approaches have high tail latency.
With Oktopus, VMs cannot burst, so the message latency
is high, both at the average and at the tail. At 99th per-
centile, message latency is 60x higher with Oktopus com-
pared to Silo. Okto+ is Oktopus’s bandwidth guarantee
with the burst allowance. It reduces the average latency
but still suffers at the tail due to switch buffer overflow.
With DCTCP and HULL, message latency is higher by
22x at the 99th percentile (and 2.5x at the 95th).

Two factors lead to poor tail latency for TCP, DCTCP
and HULL. First, class-I tenants have an all-to-one traffic
pattern that leads to contention at the destination. Sec-
ond, none of these approaches isolate performance across
tenants by guaranteeing bandwidth, so class-I small mes-
sages compete with large messages from class-II tenants.
This leads to high latency and even losses for small mes-
sages. Figure 14 shows that with TCP, for 21% of class-
I tenants, more than 1% of messages suffer retransmis-
sion timeout events (RTOs). With DCTCP and HULL,
this happens for 14% of tenants. Thus, by itself, neither
low queuing (ensured by DCTP and HULL) nor guaran-
teed bandwidth (ensured by Oktopus) is sufficient to en-
sure predictable message latency.

We also look at outlier tenants, i.e. class-I tenants
whose 99th percentile message latency is more than the
latency estimate. Figure 15 shows that Silo results in no
outliers. Since we observe outliers with other approaches,

13

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

C
D

F
(%

 o
f

te
n
a
n

ts
)

Msg Latency (99th percentile / Median)

Silo
TCP

DCTCP
Okto

(a) Messages (99th/median)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

C
D

F
(%

 o
f

te
n
a
n

ts
)

Coflow latency (99th percentile / Median)

Silo
TCP

DCTCP
Okto

(b) Coflows (99th/median)

Figure 16: Per-tenant message and coflow latency for
class-I tenants.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4

C
D

F
(%

 o
f

te
n
a
n

ts
)

Message latency/Estimated latency (class-II tenants)

Silo
TCP

DCTCP
Okto

Figure 17: Message latency for class-II tenants.

we mark the fraction of outliers whose latency exceeds the
estimate by 1x, 2x or 8x. With DCTCP and HULL, 15%
tenants are 8x outliers. For clarity, we omit the HULL
(results similar to DCTCP) and Okto+ lines in subsequent
graphs.

The same trend is evident in absolute message latency
for each class-I tenant. Figure 16(a) shows that with Silo
and Oktopus, the 99th percentile latency is very close the
median. This is because both offer bandwidth guaran-
tees. However, with Oktopus, the median latency itself
is much higher. With DCTCP, the 99th percentile latency
is more than twice the median for more than 50% of the
tenants. Figure 16(b) shows this variability is higher when
we measure coflow completion time [51], i.e. the time it
takes for all messages of a given tenant to finish. The
performance of OLDI-like applications is dictated by the
completion time of coflows and such variability can be
detrimental to user-perceived performance.

However, since Silo does not let tenants exceed their
bandwidth guarantee, it can hurt network utilization. In
our experiments, the average network utilization with Silo
was 35% lower relative to TCP and DCTCP. This is partly
because Silo results in better VM placements which re-
duces network traffic. However, this can impact the per-

 60

 70

 80

 90

 100

Locality-aware Oktopus Silo

A
d

m
it

te
d
 r

e
q
u
e
st

s
(%

)

Total
Class-II
Class-I

Figure 18: Admitted requests with various placement ap-
proaches.

formance of class-II tenants with large messages whose
completion is dictated by the bandwidth achieved. Fig-
ure 17 shows the average message latency for class-II ten-
ants, normalized to the message latency estimate. With
both Silo and Oktopus, tenant bandwidth is guaranteed,
so all messages finish on time. With TCP and DCTCP,
the message latency varies. 65% of tenants achieve higher
bandwidth with DCTCP as compared to Silo but there is
a long tail with many tenants getting very poor network
bandwidth with DCTCP. In the next section, we show that
such outlier tenants can actually drag down total cloud
throughput. Overall, this shows how Silo, without best
effort traffic, trades-off network utilization for predictabil-
ity.

6.4 VM placement simulations
To evaluate Silo’s VM placement algorithm, we devel-
oped a flow-level simulator that models a public cloud
datacenter. The datacenter has 32K servers with a three
tier network topology. The arrival of tenant requests is
a Poisson process with the average arrival rate such that
the datacenter is 90% full. We compare Silo’s placement
against two approaches: Oktopus placement that guaran-
tees VM bandwidth only and a locality-aware placement
that greedily places VMs of a tenant close to each other.
With the latter approach, bandwidth is fairly shared be-
tween flows, thus modeling ideal TCP behavior.

Figure 18 shows the fraction of tenants admitted. Silo
admits 3% fewer requests than Oktopus. While Silo ad-
mits almost the same number of class-II requests, it ad-
mits 6% fewer class-I requests because it accounts for
their delay and burstiness guarantees. However, both Silo
and Oktopus can accept more requests than locality-aware
placement. Silo can accept 7% more requests than this
greedy approach.

This result is counter-intuitive. Locality-aware place-

14

 60
 70
 80
 90

 100

1.5 5 10 15 25

A
d

m
it

te
d

R
e
q
u
e
st

s
(%

)

Average Burst Size (KB)

Figure 19: Admitted requests with varying burst size.

ment will only reject requests if there are insufficient VM
slots. By contrast, Silo can underutilize the network and
can reject a request, even when there are sufficient empty
VM slots, if the request’s network guarantees cannot be
met. The root cause is that locality-aware placement does
not account for the bandwidth demands of tenants. So it
can place VMs of tenants with high bandwidth require-
ments far apart. Such tenants get poor network perfor-
mance and their jobs get delayed. These outlier tenants
reduce the overall cloud throughput, causing subsequent
requests to be rejected. With Silo, tenants get guaranteed
bandwidth, so tenants do not suffer from poor network
performance.

Figure 19 shows that the percentage of requests ac-
cepted by Silo reduces as we increase the average burst
size requested by tenants. With an average burst size of
25KB, which is larger than messages for typical OLDI ap-
plications like web search [21,24], Silo accepts 93.3% of
requests. We also repeated the experiments while vary-
ing other simulation parameters. We omit the results for
brevity but highlight the main trends. We find that Silo
can accept more requests than locality aware placement
when the datacenter occupancy is 70% or more. Cloud
operators like Amazon EC2 target an average occupancy
of 70-80% [52]. Silo’s ability to accept tenants increases
with larger switch buffers and lesser network oversub-
scription.

7 Related Work
Silo adds to a rich literature on network performance
guarantees and optimization. We briefly summarize the
work most relevant to Silo.

Many recent efforts look at cloud network sharing.
They propose different sharing policies, including fixed
guarantees [15,16], time-varying guarantees [17], mini-
mum bandwidth guarantees [14,18,19], per-source fair-
ness [53] and per-tenant fairness [54]. However, these
proposals focus solely on bandwidth allocation, thus

catering to bandwidth-sensitive applications like data ana-
lytics. They do not cater to applications that need bounded
packet delay and ability to burst.

Many solutions achieve low latency in private datacen-
ters by ensuring small network queues [21–23] or by ac-
counting for flow deadlines [24–26]. Silo targets pre-
dictable message latency in multi-tenant public clouds
and three key factors differentiate our work. First, these
proposals do not isolate performance across tenants; i.e.
they do not guarantee a tenant’s bandwidth nor do the
control the total burstiness on network links. The for-
mer hurts the latency of both small and large messages
while the latter hurts small messages. In §6.3, we show
that DCTCP and HULL can suffer from high and variable
message latency, especially when there is competing traf-
fic from other tenants. Similarly, with D3 [24], PDQ [26]
and D2TCP [25], there is no guarantee for a message’s la-
tency as it depends on the deadlines of messages of other
tenants. And a tenant can declare tight deadlines for its
messages, thus hurting other tenants. Second, with pub-
lic clouds, we cannot rely on tenant cooperation. Tenants
can use the transport protocol of their choice and cannot
be expected pass application hints like deadlines. Thus, a
hypervisor-only solution is needed.

Finally, apart from HULL [22], none of the delay-
centric (and even the bandwidth-centric) solutions look
at the host part of the end-to-end network path. Overall,
while these solutions work well for the class of applica-
tions or environment they were designed for, they do not
ensure predictable end-to-end message latency for diverse
cloud applications.

The early 1990’s saw substantial work on providing
network performance guarantees to Internet clients. Stop
and Go [55] is the proposal most similar to Silo in terms
of architecture, in that it paces packets to minimize queue-
ing delay and to ensure conformity to bandwidth provi-
sioning. However, it introduces a new queueing disci-
pline at switches while Silo does not require any switch
changes. Further, Silo leverages the flexibility of plac-
ing VMs, an opportunity unique to datacenters. More
generally, much of the work from this era focuses on
novel queueing disciplines at switches – an approach we
chose to avoid in favor of better deployability. Zhang and
Keshav [56] provide a comparison of work on queueing
disciplines from this era, including Delay-Earliest-Due-
Date [57], Jitter Earliest-Due-Date [58], and Hierarchical

15

Round Robin [59].
Stochastic network calculus [60] allows a distribution

describing queue length to be calculated. Traditionally,
these bounds are computed on an arrival distribution over
flows. However, in datacenters, where flows arrive in job-
generated bursts, these stochastic techniques would have
to be extended to account for the bursty arrival of corre-
lated flows. Because of these correlated arrivals, we chose
to focus on worst-case bounds.

ATM [61] and its predecessors [62] provided varying
types of performance guarantees. Silo works with com-
modity Ethernet. However, it is not as flexible as ATM; it
provides only three classes of network guarantees (band-
width, bandwidth + delay + burst, and best-effort). Nev-
ertheless, to the best of our knowledge, Silo is the first to
take delay bounds and use them to work backwards for
VM placement. Furthermore, Silo pushes to much higher
performance in terms of generating paced traffic: by using
void packets, Silo can achieve sub-microsecond granular-
ity pacing with very low CPU overhead.

8 Conclusion
In this paper we target predictable message latency for
cloud applications. We argue that to achieve this, a gen-
eral cloud application needs guarantees for its network
bandwidth, packet delay and burstiness. We show how
guaranteed network bandwidth makes it easier to guaran-
tee packet delay. Leveraging this idea, Silo enables these
guarantees without any network and application changes,
relying only on VM placement and end host packet pac-
ing. Our prototype can achieve fine grained packet pac-
ing with low CPU overhead. Evaluation shows that Silo
can ensure predictable message completion time for both
small and large messages in multi-tenant datacenters.

References
[1] V. Jalaparti, P. Bodik, S. Kandula, I. Menache,

M. Rybalkin, and C. Yan. Speeding up Distributed
Request-Response Workflows. In Proc. of ACM
SIGCOMM, 2013.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: amazon’s

highly available key-value store. ACM SIGOPS,
41(6), 2007.

[3] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J.
Franklin, S. Shenker, and I. Stoica. Shark: Fast Data
Analysis Using Coarse-grained Distributed Mem-
ory. In Proc. of ACM SIGMOD, 2012.

[4] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis.
Dremel: interactive analysis of web-scale datasets.
In Proc. of VLDB, 2010.

[5] Distributed query execution engine using apache
hdfs. https://github.com/cloudera/
impala.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, 2004.

[7] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: Distributed Data-Parallel Programs
from Sequential Building Blocks. In EuroSys, 2007.

[8] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. SCOPE: easy
and efficient parallel processing of massive data sets.
In VLDB, 2008.

[9] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloud-
Cmp: comparing public cloud providers. In Proc. of
conference on Internet measurement (IMC), 2010.

[10] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Run-
time measurements in the cloud: observing, analyz-
ing, and reducing variance. In VLDB, 2010.

[11] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bob-
tail: Avoiding Long Tails in the Cloud. In Proc. of
NSDI, 2013.

[12] Y. Xu, M. Bailey, B. Noble, and F. Jahanian. Small is
Better: Avoiding Latency Traps in Virtualized Data
Centers. In Proc. of SoCC, 2013.

[13] Michael Armburst et al. Above the Clouds: A
Berkeley View of Cloud Computing. Technical re-
port, University of California, Berkeley, 2009.

[14] P. Soares, J. Santos, N. Tolia, and D. Guedes. Gate-
keeper: Distributed Rate Control for Virtualized
Datacenters. Technical Report HP-2010-151, HP
Labs, 2010.

[15] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun,
W. Wu, and Y. Zhang. SecondNet: A Data Cen-
ter Network Virtualization Architecture with Band-
width Guarantees. In Proc. ACM CoNext, 2010.

16

[16] H. Ballani, P. Costa, T. Karagiannis, and A. Row-
stron. Towards Predicable Datacenter Networks. In
Proc. ACM SIGCOMM, 2011.

[17] D. Xie, N. Ding, Y. C. Hu, and R. Kompella.
The Only Constant is Change: Incorporating Time-
Varying Network Reservations in Data Centers. In
Proc. ACM SIGCOMM, 2012.

[18] L. Popa, G. Kumar, M. Chowdhury, A. Krishna-
murthy, S. Ratnasamy, and I. Stoica. FairCloud:
Sharing the Network In Cloud Computing. In Proc.
ACM SIGCOMM, 2012.

[19] V. Jeyakumar, M. Alizadeh, D. Mazires, B. Prab-
hakar, and C. Kim. EyeQ: Practical Network Perfor-
mance Isolation at the Edge. In Proc. Usenix NSDI,
2013.

[20] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gu-
nawaradena, and G. O’Shea. Chatty Tenants and the
Cloud Network Sharing Problem. In Proc. Usenix
NSDI, 2013.

[21] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Pad-
hye, P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan. Data center TCP (DCTCP). In Proc.
ACM SIGCOMM, 2010.

[22] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vadhat, and M. Yasuda. Less is More: Trading a
little Bandwidth for Ultra-Low Latency in the Data
Center. In Proc. USENIX NSDI, 2012.

[23] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McK-
eown, B. Prabhakar, and S. Shenker. pFabric: Min-
imal Near-Optimal Datacenter Transport. In ACM
SIGCOMM, 2013.

[24] C. Wilson, H. Ballani, T. Karagiannis, and A. Row-
stron. Better Never than Late: Meeting Deadlines
in Datacenter Networks. In Proc. ACM SIGCOMM,
2011.

[25] B. Vamana, J. Hasan, and T. N. Vijaykumar.
Deadline-Aware Datacenter TCP (D2TCP). In Proc.
ACM SIGCOMM, 2012.

[26] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finish-
ing Flows Quickly with Preemptive Scheduling. In
Proc. ACM SIGCOMM, 2012.

[27] A. Parekh and R. Gallager. A Generalized Pro-
cessor Sharing Approach to Flow Control in Inte-
grated Services Networks: The Single-Node= Case.
IEEE/ACM Transactions on Networking (ToN), 1,

June 1993.
[28] J. Kurose. On Computing Per-Session Performance

Bounds in High-Speed Multi-Hop Computer Net-
works. In Proc. ACM SIGMETRICS, 1992.

[29] R. Cruz. A Calculus for Network Delay, Part I: Net-
work Elements in Isolation. IEEE Transactions on
Information Theory, 37(1):114–131, January 1991.

[30] R. Cruz. A Calculus for Network Delay, Part II: Net-
work Analysis. IEEE Transactions on Information
Theory, 37(1):132–141, January 1991.

[31] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, and
I. Stoica. Managing data transfers in computer clus-
ters with orchestra. In Proc. ACM SIGCOMM, 2011.

[32] H. Herodotou, F. Dong, and S. Babu. No One
(Cluster) Size Fits All: Automatic Cluster Sizing for
Data-intensive Analytics. In ACM SOCC, 2011.

[33] G. Ananthanarayanan, S. Kandula, A. G. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the outliers in map-reduce clusters using mantri. In
Proc. USENIX OSDI, 2010.

[34] High Performance Computing (HPC) on
AWS. http://aws.amazon.com/en/
hpc-applications/.

[35] N. Cardwell, S. Savage, and T. Anderson. Modeling
TCP latency. In Proc. IEEE INFOCOM, 2000.

[36] G. Wang and T. S. E. Ng. The Impact of Virtualiza-
tion on Network Performance of Amazon EC2 Data
Center. In IEEE Infocom, 2010.

[37] Measuring EC2 performance. http://tech.
mangot.com/roller/dave/entry/ec2_
variability_the_numbers_revealed.

[38] B. Lin and P. A. Dinda. Vsched: Mixing batch and
interactive virtual machines using periodic real-time
scheduling. In Proc. ACM/IEEE conference on Su-
percomputing, 2005.

[39] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou,
R. R. Kompella, and D. Xu. vSlicer: latency-
aware virtual machine scheduling via differentiated-
frequency CPU slicing. In Proc. HPDC’12.

[40] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra,
K. K. Ramakrishnan, and J. E. van der Merive. A
flexible model for resource management in virtual
private networks. Proc. SIGCOMM ’99.

[41] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-

17

gupta. VL2: a scalable and flexible data center net-
work. In Proc. of ACM SIGCOMM, 2009.

[42] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-
able, commodity data center network architecture.
In Proc. of ACM SIGCOMM, 2008.

[43] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat. Hedera: Dynamic Flow
Scheduling for Data Center Networks. In Proc. of
Usenix NSDI, 2010.

[44] J.-Y. Le Boudec and P. Thiran. Network Calcu-
lus: A Theory of Deterministic Queuing Systems for
the Internet. Lecture Notes in Computer Science.
Springer-Verlag, 2001.

[45] S. Lee, R. Panigrahy, V. Prabhakaran, V. Rama-
subramanian, K. Talwar, L. Uyeda, and U. Wieder.
Validating Heuristics for Virtual Machines Consol-
idation. Technical Report MSR-TR-2011-9, MSR,
2011.

[46] S. Radhakrishnan, V. Jeyakumar, A. Kabbani,
G. Porter, and A. Vahdat. Nicpic: Scalce and ac-
curate end-host rate limiting. In Proc. USENIX Hot-
Cloud’13.

[47] NDIS Filter Driver. http://msdn.
microsoft.com/en-us/library/
windows/hardware/ff556030(v=vs.
85).aspx.

[48] M. Aron and P. Druschel. Soft timers: efficient mi-
crosecond software timer support for network pro-
cessing. ACM Transactions on Computer Systems
(TOCS), 18(3):197–228, 2000.

[49] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. An-
dersen, G. R. Ganger, G. A. Gibson, and S. Seshan.
Measurement and analysis of tcp throughput col-
lapse in cluster-based storage systems. In FAST ’08.

[50] 10GE ToR port buffers. http://www.
gossamer-threads.com/lists/nanog/
users/149189.

[51] M. Chowdhury and I. Stoica. Coflow: A Network-

ing Abstraction for Cluster Applications. In Proc. of
ACM HotNets, 2012.

[52] Amazon’s EC2 Generating 220M.
http://cloudscaling.com/
blog/cloud-computing/
amazons-ec2-generating-220m-annually.

[53] A. Shieh, S. Kandula, A. Greenberg, and C. Kim.
Sharing the Datacenter Network. In Proc. of Usenix
NSDI, 2011.

[54] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Vargh-
ese. NetShare: Virtualizing Data Center Networks
across Services. Technical Report CS2010-0957,
University of California, San Diego, May 2010.

[55] S. J. Golestani. A Stop-and-Go Queueing Frame-
work for Congestion Management. In Proc. ACM
SIGCOMM, 1990.

[56] H. Zhang and S. Keshav. Comparison of Rate-Based
Service Disciplines. In Proc. ACM SIGCOMM,
1991.

[57] D. Ferrari and D. Verma. A Scheme for Real-
Time Channel Establishment in Wide-Area Net-
works. IEEE Journal on Selected Areas in Commu-
nications, 8(3):368–379, April 1990.

[58] D. Verma, H. Zhang, and D. Ferrari. Guaranteeing
Delat Jitter Bounds in Packet Switching Networks.
In Proc. IEEE Conference on Communications Soft-
ware (TriComm), 1991.

[59] C. R. Kalmanek, H. Kanakia, and S. Keshav. Rate
Controlled Servers for Very High-Speed Networks.
In Proc. IEEE Global Telecommunications Confer-
ence, 1989.

[60] Y. Jian and Y. Liu. Stochastic Network Calculus.
Springer-Verlag, 2008.

[61] S. Minzer. Broadband isdn and asynchronous trans-
fer mode (atm). Communications Magazine, IEEE,
27(9):17–24, 1989.

[62] G. Finn. RELIABLE ASYNCHRONOUS TRANS-
FER PROTOCOL (RATP). RFC 916.

18

