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Internet-wide services and applications depend on accurate information about the internal
network state to deliver good performance to end-users. However, today’s Internet does
not provide such information explicitly and a number of systems have been recently pro-
posed and implemented to provide a shared measurement infrastructure for distributed
applications. The goal of this work is to demonstrate that without any new measurement
infrastructure or active probing we obtain composite performance estimates from AS-by-
AS segments and the estimates are as good as (or even better than) those from existing
estimation methodologies that use on-demand, customized active probing. The key idea
behind scaling measurements to the size of the Internet is to take advantage of the known
underlying structure of the network.

The main contribution of this paper is an estimation algorithm that breaks down mea-
surement data into segments, efficiently identifies relevant segments, and, by carefully
stitching segments together, produces delay and path estimates between any two end
points. Fittingly, we call our algorithm path stitching. Our results show remarkably good
accuracy: error in delay is below 20 ms in 80% of end-to-end paths. We also show that
our path stitching approach performs comparably to existing iPlane without having to
instrument any new measurement node.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Internet-wide services and applications depend on
accurate information about the internal network state to
deliver good performance to end-users. For example, con-
tent distribution networks use path or delay information
to direct clients to replicas that would provide best perfor-
mance. Peer-to-peer VoIP systems (e.g., Skype) have been
shown to deliver better voice quality when AS path infor-
mation is taken into account in selecting peers [1]. How-
ever, today’s Internet does not provide such information
explicitly and developers resort to ad hoc measurement
. All rights reserved.
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tools to obtain the necessary data. This poses an additional
tax on the development cost of new services and
applications. For this reason, a number of systems have
been recently proposed and implemented to provide a
shared measurement infrastructure for distributed appli-
cations [2–5]. They follow a common plan of action: (1)
define estimation methodologies for delay, path, loss rates,
etc.; (2) carefully construct an active probing strategy and
instrument end-systems to collect measurements
accordingly.

In this work we diverge from this tradition of active
measurement. We are interested in the potential of estima-
tion methodologies in isolation from data collection. Our
goal is to demonstrate that without any new measurement
infrastructure or active probing we obtain composite
performance estimates from AS-by-AS segments and the
estimates are as good as (or even better than) those from
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Table 1
AS-level statistics for PL nodes.

# Pairs # ASes Transit AS Stub AS

planetlab 10,539 276 (6) 197 (0) 79 (6)
pl-easy 462 199 (4) 129 (0) 70 (4)
pl-hard 10,077 270 (5) 194 (0) 76 (5)
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existing estimation methodologies that use on-demand,
customized active probing. The key idea behind scaling
measurements to the size of the Internet is to take advan-
tage of the known underlying structure of the network.
Existing approaches in line with ours are iPlane [2,6] and
Akamai’s core points [7]. They derive estimates by compos-
ing performance measures of network segments along the
end-to-end path. Our approach differs from these two in
that we construct end-to-end information from perfor-
mance measures segmented by the AS. Let us illustrate
our approach in the following simple example. Consider a
query for some performance metric between two points x
and y in the Internet. Assuming that we have access to seg-
mented performance measures, we infer the AS path be-
tween the two points and construct the end-to-end
metric corresponding to those ASes on the inferred path.

The main contribution of this paper is an estimation
algorithm that breaks down measurement data into seg-
ments, efficiently identifies relevant segments, and by,
carefully stitching segments together, produces delay and
path estimates between any two end points. Fittingly, we
call our algorithm path stitching. In this work we use path
and round-trip delay as measures of interest for validating
our structural approach.

Our approach is based on the following assumptions:
(1) AS-level path inference is accurate, (2) measurement
data segmented by the AS is readily available, and (3) char-
acteristics of end-to-end path retain temporal stability. We
argue that these assumptions are reasonable and present
surmountable challenges. AS path inference has been an
active area of research [8–10] and published methodolo-
gies now report 90% accuracy in AS path inference. Numer-
ous end-to-end measurement data sets are publicly
available today that we can utilize [11,12,2].

Finally, with regard to the third assumption, routes
from a single end-host to many destinations are known
to be fairly stable despite Internet’s inherent dynamic nat-
ure [13,6].

Our results show remarkably good accuracy: error in
delay is below 20 ms in 80% of end-to-end paths. We also
present a comparison with iPlane [2], where measure-
ments are carefully designed from hundreds of vantage
points to maximize accuracy. Path stitching show an accu-
racy similar or slightly better than iPlane without having to
instrument any new measurement node.

The accuracy of our path stitching algorithm defines
what is already achievable without instrumenting or
deploying any additional measurement node. We believe
it is about time that we look into the possibility of taking
the most out of existing measurements and their infra-
structures, instead of building yet another measurement
system. Our work is a step towards bringing a diverse set
of measurements together to improve accuracy without
additional active measurements. Path stitching represents
a reference baseline valuable when it comes to understand
the benefits (and the costs) of deploying a new measure-
ment infrastructure.

The rest of the paper is organized as follows. The next
section describes data sets that are used throughout the
paper. Section 3 presents the path stitching algorithm.
Our approach of segmenting existing measurements and
stitching them up may lead to two complications: there
may not be any valid path between a pair of end systems
and we need to resort to approximation methods (Section
4); or there may be too many candidate solutions and we
need to trim their list (Section 5). We assume that the
source data sets contain inherent measurement errors.
Our algorithm avoids amplifying them by implementing
mitigation techniques (Section 6). Section 7 presents an
evaluation of each step of the algorithm as well as a com-
parison with existing path and round-trip delay estimation
approaches. Finally, Section 8 discusses related work that
led us to this work and Section 9 summarizes our conclu-
sions and presents future work.
2. Data

We use three measurement data sets from three inde-
pendent sources: Routeviews [14] and RIPE [15] BGP rout-
ing table snapshots and Ark [12] traceroute outputs. These
datasets are among the largest data archives publicly avail-
able and hold constantly updated information about IP and
AS-level topologies. Thus they provide a good starting
point for our investigation into the feasibility of path
stitching.

CAIDA’s Ark project collects traceroutes from 18 moni-
tors to every /24 routable prefix. From Ark, we use one
round (cycle-20080407) of traceroute outputs taken from
April 7th to 9th, 2008 (a total of approximately 14 million
traceroute outputs).

RouteViews and RIPE are two most widely used reposi-
tories of BGP routing table snapshots. We use BGP routing
table snapshots from RouteViews’ BGP listener, route-

views.oregon-ix.net. We also use snapshots from RIPE NCC
routing information service (RIS). RIS operates 14 monitor-
ing points (rrc00 – rc07 and rrc10 – rrc15) and each mon-
itoring BGP listener peers with different ASes. Both
snapshots are from the same three-day-period as our Ark
data.

2.1. Evaluation data set

To evaluate the accuracy of our estimation methodol-
ogy, we take direct path and delay measurements between
a set of hosts and compare them against the path stitching
estimates. We ran traceroute 50 times a day between 184
PlanetLab (PL) nodes during the same period as the Ark
data. For 569 pairs we failed to collect any path or delay
measurements because of long-lasting host failures and
excluded those pairs from our data set. We also discard
pairs for which traceroutes do not reach the destinations.
The row planetlab in Table 1 summarizes the AS-level
characteristics of the data set. Numbers in ()’s represent
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ASes that appear in the PL data set but are not covered in
the Ark data set. A total of 6 stub ASes are not seen by
any of the Ark monitors.

We then split this data set in two smaller sets: pl-easy
and pl-hard. The distinction between the two sets lies in
the co-location of Ark monitors at the source AS. Pairs in
the pl-easy set have the source node located in the same
AS as an Ark monitor (namely, amw-us, cbg-uk, cjj-kr, dub-
ie and gig-br). There are 462 pairs in the set. We expect
path stitching to return the most accurate results on this
set of nodes. The latter set pl-hard contains the remain-
ing pairs whose source PL nodes are not in the same ASes
as any Ark monitor. This set is useful to evaluate our meth-
odology for uncharted (or partially measured) network re-
gions. The inter-domain connectivity of Planetlab nodes
relies on research networks and may not be representative
of the Internet [16]. However, several sites do reside on the
commercial Internet (26 as of January 2006 [17]). As it is
arguably very difficult to assess the representativeness of
any data set, and the goal of this data set is to evaluate
the accuracy of our path stitching. We leave the problem
of representativeness for future work. We are also cur-
rently in the process of obtaining different datasets from
PingER project [18] or from public traceroute servers [19]
to extend our current validation.
3. Path stitching

Our goal is to estimate end-to-end path and round-trip
delay between any two hosts in the Internet without
resorting to active probes but re-using existing network
measurement data. In the design of the path stitching algo-
rithm we are guided by two main objectives: (i) coverage:
the algorithm must be able to answer even those queries
about end systems that are not present in the existing
measurement data sets; and (ii) accuracy: the estimate
should be as close to the actual measurement as possible.

As a first step, we focus on path and round-trip delay as
they address two basic performance measurement needs
for any distributed application. From an application devel-
oper’s standpoint, path stitching appears as a simple
query-based Internet service: a query consists of two IP ad-
dresses (source and destination) and the results contain a
ranked list of candidate router-level paths and correspond-
ing round-trip delay estimates. Now we begin the descrip-
tion of the path stitching algorithm.

3.1. Algorithm

Given two IP addresses as input, the path stitching algo-
rithm operates as follows:

Step 1: Map IP addresses to AS numbers. We use the BGP
routing tables to map an IP address to an AS number.
The longest prefix match on the IP address returns the
prefix and corresponding AS path. The last AS number
is then taken as the origin AS for the host. Section 6.1
describes how we handle the case when the mapping
is incorrect or when a single IP address maps to multi-
ple origin ASes.
Step 2: Infer AS-level paths between ASes. Once we map
hosts x and y of a query to their origin AS numbers,
the next step is to infer an AS path between them. Infer-
ring an AS-level path between two ASes without access
to either of the AS is not simple. Much research has
focused on AS path and topology inference [20,8–10].
For our work, we use KnownPath [9] as their publicly
available tool reports the best accuracy in AS path infer-
ence without the first AS hop information [9]. It exploits
the AS paths already present in BGP routing tables and
infers AS paths by extending these known AS paths. Its
inferred AS paths always conform to the valley-free
property of AS paths [21]. KnownPath may produce
multiple inferred AS paths. In Section 6.2 we extend
KnownPath to improve its accuracy.
Step 3: Stitch path segments along the inferred AS path.
Taking as input the inferred AS path from Step 2, we
extract router-level path segments from the traceroute
database and stitch them up along the inferred AS path.
This step may result in no candidate paths or may lead
to too many candidate paths. We discuss approxima-
tion methodologies for the former case in Section 4
and preference rules for the latter in Section 5.
Step 4: Return the best candidate paths and delays. When
Step 3 outputs stitched paths, the final step is to calcu-
late round-trip delays along the paths and return them
as query result. The results contains both the most
recently measured round-trip delays as well as a distri-
bution of all the measured delays along the path.

Each step above makes use of the Ark and BGP data. In
order to handle potentially large data sets efficiently, we
pre-process and convert them to a more easily manageable
format. Next, we describe the data conversion process.

3.2. Constructing the path segment repository

We split traceroute outputs into intra-domain segments
and inter-domain segments. The set of intra-domain seg-
ments of a AS A (indicated by :A:) cover all known paths
between any ingress and egress points of the AS A (to-
gether with router-level and latency information). The set
of inter-domain segments between AS A and AS B (indi-
cated by A::B) describe all inter-AS connections that appear
in the Ark data set. These ‘‘path segments” represent the
basic components that are later stitched by our algorithm.
Table 2 contains sample path segments from two tracero-
ute outputs, one from host a to host b, ha,a1,a2,b1,b2,bi
and the other from host a

0
to b

0
, ha0,a1,a3,b3,b2,b

0i. All a ad-
dresses belong to AS A and all b addresses belong to AS B.
The actual size of the repository constructed from 14 mil-
lion traceroute outputs of the Ark data set is: 2.1 M intra-
domain segments and 0.6 M inter-domain segments.
About 1 M unique IP addresses are observed.

3.3. Query example

We use the repository in Table 2 to illustrate how we
resolve a simple query from host a to host b. First, we
use the BGP routing tables to map a to AS A and b to AS
B (Step 1). Again from the BGP tables we derive the



Fig. 1. Example of clustering.

Table 2
Path segment repository example.

Segment Ingress Egress Interim Delay

:A: a a2 a1 dA

a
0

a3 a1 d0A

:B: b1 b b2 dB

b3 b
0

b2 d0B

A::B a2 b1 – dAB

a3 b3 – d0AB

Table 3
Number of ASes in Ark and BGP data.

Data type Total AS Transit AS Stub AS

BGP 28,244 4,847 23,397
Ark 14,378 4,418 9,960
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AS-level path from a to b (Step 2), A B in this example.
Then, among the intra-domain segments of A, we search
for those that start with a and find ha,a1,a2i. Then we re-
solve the portion A::B by looking for the same ingress
and egress points in the repository and find a segment
ha2,b1i that rendezvouses with the :A: segment at a2. We
continue to stitch up in a similar manner, and the final
query result is one single path: ha,a1,a2,b1,b2,bi with delay
dA + dAB + dB.

Actual queries are more complicated to answer than the
above sample case. The following sections address the
challenges in detail.

4. Approximation in path stitching

Path stitching does not always return a stitched path. It
fails when the path segment repository is missing data for
the following three reasons: (i) the source or destination IP
address maps to an AS that is not present in the repository;
(ii) the inter-domain segment is not present in the reposi-
tory; or (iii) the end of a path segment does not match any
of the beginnings of the next path segments (i.e., the seg-
ment cannot be stitched).

The first case of missing ASes has no solution other than
collecting more measurements. Ark monitors operate in a
coordinated manner to probe every routable /24 prefix.
Yet the Ark dataset is missing 50% of ASes present in the
BGP tables (see Table 3). A careful look at the data reveals
that the Ark dataset covers 93% of the transit ASes and just
42% of the stub ASes.1 Furthermore, 89% of the missing ASes
(12,382 out of 13,866) correspond to traceroutes that did not
reach their intended destinations and returned incomplete
results. The 13,866 ASes not covered in the Ark data set cor-
respond to approximately 110 million, or 5.8%, of the IP ad-
dresses that originate from all ASes in the BGP data: an order
of magnitude smaller percentage than in the number of
ASes. For those IP addresses, our path stitching cannot gen-
erate any estimate. For future work, we consider incorporat-
ing a second traceroute-based dataset (DIMES [22]) to
increase the IP address coverage above the current 94.2%
and AS coverage from 50.9% (see Section 7.5 for detail).

The second case of missing inter-domain segments is
common. A possible work-around is to search for a reverse
segment. That is, if we cannot find an inter-domain
segment A::B, we consider the reverse path segment,
B::A, instead, as a potential candidate. This is reasonable gi-
1 We call an AS transit if it appears in any AS path (not the first nor the
last AS) in a BGP table; otherwise, stub.
ven that inter-domain segments are typically over point-
to-point links and all links are bi-directional.2 Our data
set contains 61,606 sets of inter-domain segments and
the number grows to 103,030 after we incorporate the re-
verse inter-domain segments.

We address the third case by clustering IP addresses.
Fig. 1 illustrates our solution. In the example, the Ark data
set contains the AS paths X::A::Y and Z::A::W. When a
query for IP addresses x and w arrives, the algorithm infers
an AS path X::A::W, but it is not able to find in the reposi-
tory segments that can be stitched together. As in the case
of inter-domain segments, we reverse intra-domain seg-
ments and see if the end points of the segments line up.
Reversing intra-domain segments is in line with the way
network operators set link weights for computing the
shortest paths, i.e., the same weight in both directions
[23,24]. In this example reverse intra-domain segments
do not help. We then resort to approximation by cluster-
ing: the dotted circle in Fig. 1 collapses two egress points
into one. We employ multiple levels of clustering, first by
the router (called IP aliasing), the point-of-presence
(PoP), and the prefix length. Clustering at the router level
has been addressed in previous work [25,26] and there ex-
ist data sets that have resolved IP aliasing. Recent work by
Madhyastha et al. offers router aliases as well as PoP clus-
ters [2]. In our evaluation we use their router aliases and
PoP clusters from January 2008 and March 2008, respec-
tively. We extend approximation one step further than in
[2] and allow clustering by the prefix if router or PoP clus-
tering fails.

The first case is only addressable with additional data.
In Section 7 we evaluate the approximation techniques
only for the last two cases.
5. Preference rules

In the previous section, we have discussed cases where
there are no stitched paths after Step 3. Now, we turn our
attention to the cases where there are too many stitched
2 Note that early exit routing policies (often called hot-potato routing)
only affect intra-domain paths, not AS-level paths.
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paths for a given query. Our goal in this section is to define
the rules of preference and apply them to trim the list of
candidate paths. A key insight in designing good prefer-
ence rules is to reflect the actual mechanism that route
packets through the network. A good preference rule is
therefore one that effectively discriminates among the var-
ious stitched paths without compromising the accuracy of
delay estimates.

5.1. Finding clues to preference rules

To get a sense of the challenges ahead, we take a quick
look at a few PlanetLab measurements described in Section
2.1. We examine the stitched paths and their differences
and scout for clues on how to discriminate among them.
In Fig. 2 we compare estimated delays from stitched paths
Fig. 2. Two examples to demonstrate differences between stitched paths.
with on-the-spot measurements for two representative
pairs of PlanetLab nodes.

The first pair (mit.edu to stanford.edu) comes from
PlanetLab nodes that are located in ASes different from
any Ark monitor. Step 3 of the path stitching algorithm re-
turns 22 candidate paths. The paths traverse two ASes and
are derived by stitching together one segment in the
source AS, 11 segments in the destination AS (AS32 – Stan-
ford University) and 2 inter-domain segments. Fig. 2(a)
plots the median and interquartile mean delays as well
as the most recent delay estimate for each path (we may
have multiple measurements per segment and thus
stitched path). The dotted and solid vertical lines represent
the minimum and maximum delays from 150 traceroutes
we have collected (on-the-spot measurements).

Taking a closer look at the original path segments, we
notice that the main difference between the various candi-
date paths is the distance between the source and destina-
tion addresses and the start and end points of the stitched
paths.3 Only one of the 11 intra-domain segments in AS 32
belongs to the same /22 prefix as the destination address.
Fig. 2(b) plots the delay estimates of the resulting 2
stitched paths (we keep both inter-domain segments).
The estimates, either most recent or median, are very close
to on-the-spot PlanetLab node measurements. It appears
therefore that restricting ourselves to paths closer to the
destination (or source) address allows to drop a large num-
ber of candidate paths with little risk of degrading the esti-
mate accuracy.

The second pair (Fig. 2(c)) is between PlanetLab nodes
where the source node (planetlab2.xeno.cl.cam.ac.uk) is lo-
cated in the same AS as an Ark monitor, cbg-uk, and the
destination (p11-higashi.ics.es.osaka-u.ac.jp) is not. The in-
ferred AS path of this pair is 7862096529074730 and we
obtain 40 stitched paths for this query. We plot again the
most recent, median, and interquartile mean of estimated
delays per path in Fig. 2(c).

In this example, the estimated delays using the most re-
cent delays are about 100 ms smaller than on-the-spot
measurements, while the median and interquartile mean
delays match the on-the-spot measurement for 50% of
the paths. The other 50% of the paths are 20 ms larger de-
lays. We have examined the 40 paths manually and found
two intra-domain segments in AS 20965. These two path
segments start and end at the same ingress and egress rou-
ters of AS 20965, but have different number of internal
hops and delays; thus the overall difference of about
20 ms in Fig. 2(c).

Between the two intra-domain segments in AS 20965,
the segment with smaller delay is originally from a trace-
route destined to a prefix in AS 4730, while the longer de-
lays come from a path to AS 19401 (that does not belong to
the inferred AS path). This example has given us a second
idea for a preference rule: use the original destination pre-
fix of the traceroute measurement to discard candidate
segments.
3 We define ‘‘distance” as the size of the prefix that contains both
addresses. For example, two addresses that belong to the same/24 prefix
are ‘‘closer” than two address that belong to the same/23 prefix (but
different/24 prefix).
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From the above two examples, we glean two ideas for
preference rules: (i) proximity to the source and destination
address of the query and (ii) destination-bound segments
that are derived from traceroutes with the same destina-
tion prefix. In the following, we examine in detail how
effective these rules are at narrowing down the list of can-
didate paths.
Fig. 3. Delay difference between the shortest and longest paths in an AS.

Fig. 4. The amount of delay of the longest paths relative to the shortest
paths in an AS.
5.2. Preference rule #1: proximity

IP addresses in the Internet far outnumbers ASes and
there is no public dataset that collects path and delay mea-
surements between all the IP addresses. For example, Ark
project collects data from only 18 source monitors. Thus
end points of a query are likely to be not found in the path
segment repository. Our first rule of preference addresses
this problem by proximity. The proximity rule dictates that
the path segments closest to the queried IP addresses are
chosen for path stitching. The proximity is measured by
the common prefix length. Although this rule is very effec-
tive at narrowing down the list of candidates,4 it is not
clear what impact it might have on the delay estimate.

To address this concern, we plot in Fig. 3 the cumulative
distribution function (CDF) of the difference between min-
imum and maximum delays across path segments within
each AS in our dataset. For a path segment for which we
have multiple measurements we use the median delay.
The number of ASes plotted is 10,368, that is 4,010 fewer
than the total in our Ark dataset: the excluded 4,010 ASes
are all stub ASes and have just one path segment.

About 61% of the ASes included in the plot have differ-
ences smaller than 1 ms. Between 1 and 100 ms, the num-
ber of ASes grows steadily from 61% to 82%, and then
beyond 100 ms, there is a noticeable jump at 3 s (due to
the default traceroute timeout or an artifact of a particular
model of consumer routers as these RTTs are found in a
few ASes.).

In 18% of ASes, the delay difference within an AS is
greater than 100 ms. In Fig. 4, we plot the CDF of how
many times larger is the maximum delay than the mini-
mum delay within each AS in our data set (calculated by
the maximum delay divided by the minimum delay). We
see that for 10% of ASes, the maximum delays are more
than ten times larger than the minimum delays. For those
ASes (for delay within an AS varies widely), finding the
closest point to the queried host along the path segments
should lead to improved accuracy in delay estimation.
5.3. Preference rule #2: destination-bound path segments

Routing decisions in the Internet are made at every hop
based on the destination. As demonstrated by the second
example of Fig. 2(c), the original traceroute from which a
segment is derived helps both in reducing the list of candi-
dates as well as improving the delay estimate.

This is consistent with how packets are routed through
a network: as a packet enters an AS, the ingress router
4 The size of the network prefix (e.g., /22) as a distance metric is an
effective means of discriminating paths, as it allows strict ranking.
looks up the destination address of the packet, determines
the egress point based on the destination prefix and routes
the packet towards the egress point. When we segment
traceroute outputs by the AS and create the path segment
repository, we keep this destination information with the
segments and use it later in path stitching. Using only
those segments derived from traceroutes with the same
common destination prefix (‘‘destination-bound seg-
ments”) makes sense as it is consistent with how packets
are routed in the Internet.

However, an open question with this rule is whether it
is effective at narrowing down the list of candidates. To an-
swer this question we look at the number of prefixes in the
traceroute outputs that contribute to each segment. Fig. 5
plots the CDF of the number of prefixes per segment. In
the figure, we consider only those 2,672 path segments
from the source ASes of the Ark monitors. This is the worst
case for us given that those segments are likely to see the
largest number of destination prefixes. Half of the seg-
ments have only 1 prefix, and 80% of segments have fewer
than 10 prefixes. Given that segments have so few prefixes,
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the destination-bound segment rule is very likely to reduce
the number of candidate paths significantly.

5.4. Preference rule #3: most recent path segment

Even after applying the two preference rules described
above, we may be left with more than one candidate path.
At this point we need to define a final preference rule. For
this purpose we decide to rank the candidates according to
the time of the actual measurement (from most to least re-
cent). Indeed, end-to-end routes can change at any mo-
ment in the network, thus the most recent segment is
likely to represent the end-to-end route most accurately.
Note that this rule may still lead to multiple paths given
the timestamp resolution of the traceroute dataset (that
is in the order of 1 s). In such a case we return all as answer
to the query.

5.5. Summary

In this section we have described three preference rules
that narrow down the list of candidate stitched paths. We
apply these rules and break ties. The path stitching algo-
rithm first applies the proximity rule to reduce the initial
path segments in the source AS. Then, it selects inter-
and intra-domain path segments towards the destination
that are derived from traceroutes with the same destina-
tion prefix. Finally, it applies the proximity rule at the des-
tination AS. As a last step, it ranks all the remaining paths
(with the same distance from source and destination ad-
dress) based on the timestamp of the measurement.

Our algorithm applies the preference rules segment by
segment from the source to the destination AS, and is lo-
cally greedy. Then how good is our estimate from the best
possible answer? To answer this question, we compare the
delay estimate our algorithm returns to the best estimate
found with an exhaustive search in the path segment
repository. By the best estimate, we mean the closest esti-
mate to the actual measurements. The queries come from
our evaluation data sets pl-easy and pl-hard as de-
scribed in Section 2.1. Fig. 6 plots the CDF of the absolute
difference in the two delay estimates. The preference rules
perform very well: for 90% of the pl-easy pairs and 85% of
the pl-hard pairs the difference in delay estimates
Fig. 5. CDF of number of prefixes per segment.
between the stitched path our algorithm returns and the
best path that exists in the repository is less than 10 ms.
6. Addressing sources of error

In various steps of our path stitching algorithm, errors
present in the original measurement datasets enter the fi-
nal estimates if not filtered. We look into these errors in
detail, and explain our approaches in dealing with them.
In this section we describe major sources of error and
our approach to mitigate their impact.
6.1. IP-to-AS mapping

The first step in the path stitching algorithm maps the
IP addresses to AS numbers. Accurate mapping poses two
challenges. First, an IP address can be mapped to an incor-
rect origin AS. Mao et al. [27,28] have pointed out that IP-
to-AS mapping techniques based on BGP tables lead to er-
rors due to route aggregation, interface numbering at AS
boundaries, and routing anomalies. Second, an IP address
can be mapped to multiple ASes, if they have all announced
themselves as origin ASes for that address. This problem is
aptly referred to as Multiple Origin ASes (MOAS). We look
into these two cases in detail, and explain our approaches
in dealing with them.
6.1.1. Single origin AS mismatch
We perform IP-to-AS mapping in two distinct phases of

our methodology. First, to build the path segment reposi-
tory (Section 3.2) we map all the IP addresses in the trace-
route outputs to AS numbers and store the entries by the
AS number. Second, in Step 1 of our path-stitching algo-
rithm, we map the queried IP addresses to their AS num-
bers. If the mapping is incorrect in either of the two
phases, the inaccuracy in our estimates could increase.

Mao et al. [28] have reported that inaccurate IP-to-AS
mappings may cause: (1) extra AS hops, (2) missing AS
hops, (3) substitute ASes, and (4) two-hop AS loops.
Though diverse in patterns, they manifest as one type of er-
ror in our methodology: they all produce path segments
with wrong AS information.



Table 4
Prefixes with MOAS conflicts. The percentage refers to the portion of the
total number of traceroutes that exhibit a MOAS conflict.

IP prefix MOASes in the same country %

205.189.33.0/24 6327 6509 26.18
134.75.20.0/24 1237 17579 25.41
207.231.241.0/24 293 14221 101 3.26

MOASes caused by IXPs

80.81.192.0/23 12956 8365 10.90
198.32.176.0/24 701 2914 65517 4355 6461 7.72
198.32.160.0/24 6461 22691 12989 3.58
206.223.115.0/24 293 2914 1273 3.02
195.69.144.0/23 286 12956 1200 30132 31283 2.78
206.223.119.0/25 2914 293 2.33

Other MOASes

69.28.128.0/18 22822 21318 4.85
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Out of the four types of IP-to-AS mismatches above, we
can identify two-hop AS loops in our Ark data set. The
remaining three types are not detectable without accurate
AS paths to compare. Performing IP-to-AS mapping on our
data set shows that 8.9% of traceroutes would lead to two-
hop AS loops. Resolving these loops is not straightforward.
For example, the AS path of A B A should not happen, as no
AS path in a BGP table of an AS contains the owner AS itself.
Now, are we sure that it is the host in the middle that is
mismatched to AS B? Or should the first host be mapped
to another AS X? Or the last host to AS Y? Resolving these
loops requires additional information, such as BGP paths
extracted from routers at the measurement sources
[27,28]. We do not have access to such BGP information
for all the sources in our Ark data set.

We have a choice of not using the traceroute outputs
with AS loops in our data set. However, the IP addresses
are not bogus, and only the mapping is problematic. There
is a possibility that a route change takes place within a tra-
ceroute and an AS loop appears in the traceroute output.
We assume it to be a rare event and do not address it in
this work. For this reason, we choose to include those path
segments from AS loops.

Fig. 7(a) shows how we incorporate information from
two-hop AS loops. Basically, we add all possible combina-
tions to our database. First, we add a path segment of AS
A with both x1 and x2 inside. Then, we also take segments,
:A:, A::X, and :X:, from A X A. Only the first half or the sec-
ond half of the loop is ever likely to be used in our path
stitching, for no inferred AS path will have a two-hop AS
loop. Note that the original IP-to-AS mapping remains con-
sistent and any query with x1 will be mapped to AS X.

6.1.2. Multiple origin AS
MOAS conflicts are mostly from multi-homing configu-

rations, Internet exchange point addresses, or anycast ad-
dresses [29]. MOAS could be also from human errors or
malicious activities, such as prefix hijacking. Zhao et al.
show that a large fraction of MOAS conflicts appeared only
once and did not last more than one day, implying that
those short-lived conflicts could be caused by transient
BGP misconfigurations [29].

Let us first analyze the dominant MOAS patterns that
we face in our data set. We map all individual IP addresses
in traceroute outputs to AS numbers: 472 IP prefixes map
to multiple origin ASes. Table 4 lists the top 10 most fre-
quently encountered MOAS prefixes, and these prefixes
contribute to 90% of the traceroute outputs with MOAS
conflicts. After manual investigation on these 10 prefixes,
we find that 54.85% of MOAS cases are located in the same
Fig. 7. Three heuristics in IP-to-AS mapping. Circles represent IP
addresses and rectangles ASes. XjY is a MOAS of AS X and Y.
country. We suspect AS 6327 (Shaw Communications) and
AS 6509 (CANARIE Network) to be from a customer-pro-
vider relation. AS 1237 and AS 17579, MOASes of the prefix
134.75.20.0/24, even have the same AS name, Korea Insti-
tute of Science and Technology Information (KISTI). These
two ASes are likely to be sibling ASes belonging to the
same organization. The third case of 207.231.241.0/24 in-
volves three research networks, AS 293 (Energy Sciences
Network), AS 14221 (UW R& D AS), and AS 101 (PNW Giga-
pop). As we can see there are many different causes of
MOAS. However, identifying the actual cause is out of
scope for this paper. We are interested only on under-
standing its impact on the path stitching estimates.

We also observe that 30.33% of MOAS are caused by
Internet exchange points (IXPs). Prefixes that belongs to
IXPs are usually mapped to MOAS of one or more of partic-
ipating ASes. IXPs do not appear in BGP routing tables and
need a different treatment. To identify prefixes that are as-
signed to IXPs, we use the information available from the
web site of packet clearing house (PCH) [30]. One notable
example is the prefix 80.81.192.0/23, and its ownership
transcends national boundaries of Spain (AS 12956 is
Telefonica Backbone AS) and Germany (AS 8365 is Metro-
politan Area Network Darmstadt). The whois query on this
prefix reveals that its network name is DE-CIX-FRA-IXP
(Deutscher Commercial Internet Exchange in Frankfurt,
Germany). The other five prefixes (198.32.176.0/24 to
206.223.115.0/24) are allocated to PAIX, NYIIX, AMS-IX,
EQUINIX-IX-CHI, and EQUINIX-IX-ASH, respectively.

The last prefix, 69.28.128.0/18, belongs to Limelight
Networks (AS 22822) and Norwegian Open Peering Associ-
ation (AS 21318). This MOAS conflict is close in nature to
the MOAS case from Internet exchange points.

In summary a large fraction of MOAS prefixes are
caused by sibling ASes and Internet exchange points in
our data set. Still, we do not have solid grounds to give
preference to one AS over the others. Therefore, our basic
policy is to incorporate all possible combinations of infor-
mation as in Section 6.1.1. When a prefix maps to MOAS
and none of the ASes is an IXP, then we allow an IP address
to map to MOAS as in Fig. 7(b). If a prefix belongs to an IXP,
then we map it to the ASes before and after the IXP as in
Fig. 7(c) and build path segments accordingly.
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The key point in dealing with IP-to-AS mapping is to
incorporate connectivity between ASes despite the map-
ping problem. The above heuristics allow us to include
those inter-AS segments in our estimation.

6.2. AS path inference

Inferring an AS-level path between two ASes without
access to either of the AS is not simple. Although Known-
Path produces reasonably accurate AS paths, we still see
room for improvement in accuracy given our datasets.
Mao et al. observed that multi-homing is one of the main
obstacles to the accurate AS path inference [8], and they
provide a novel technique to infer the first AS hop. Qiu
and Gao [9] also show that KnownPath’s inference accu-
racy improves by incorporating the first AS hop informa-
tion. Mao et al.’s first AS hop inference, however, requires
a designated measurement infrastructure and a large num-
ber of active probes, and we cannot adopt their methodol-
ogy. Our choice is, therefore, to extract first-hop
information from the Ark traceroute data. For example,
from an AS path A B C D from a traceroute output, we infer
that for the destination AS D, the first hop ASes of A, B, C are
B, C, and D, respectively. From the Ark data, we garner first
hop information for 5,387 ASes.

It has been reported that links not reported in BGP rout-
ing tables appear in measurements in the data plane [31–
34]. ISPs do not advertise all links to their peers via BGP.
For example, peering links are not advertised to other
peers. Those links are operational, and possibly appear in
the Ark traceroute outputs depend on the placement of
the Ark’s traceroute server. He et al. [33] report 40% more
edges and 300% more peer-to-peer edges and Roughan
et al. [34] estimate 700 monitors are needed to identify
99.9% edges. As the goal of this work is not to devise a
new algorithm to identify all missing links, we demon-
strate how to incorporate additional information from
the Ark dataset to the existing database of AS topology.

We regard each Ark monitor as a BGP peer, and from
each monitor’s traceroute outputs, we extract several fields
that make up BGP table entries: destination prefixes, next
hops (monitor’s addresses), and AS paths. We exclude tra-
ceroute outputs that do not reach the destination ASes. We
also exclude incomplete traceroute outputs (one or more
hops are missing). AS paths from traceroute outputs may
contain loops or MOASes and we remove those AS paths
as well. We investigate in more detail the accuracy of
KnownPath for the inferred paths in our data set in Section
7.

6.3. Traceroute

6.3.1. Internet dynamics captured by traceroute
Topology changes and traffic fluctuations are the two

main factors that cause network performance change. For
this work we use one round of Ark data sets captured in
3 days. For some segments, the delay measurements are al-
ready 3 days old by the time we take up the Ark data set.
Other path segments are repeatedly updated throughout
the 3 days. For example, all traceroutes that originate from
the same Ark monitor share the common router hops near
that monitor and corresponding segments are updated
very frequently.

To calibrate the network performance dynamics in our
data, we pick out intra-domain and inter-domain path seg-
ments that are updated more than twice and more than ten
times. In our data set, 28% of intra-domain and 55% of in-
ter-domain path segments are updated more than twice,
and 6% of intra-domain and 22% of inter-domain segments
more than ten times. For those path segments, we calculate
the standard deviation (r) of the delay measurements and
plot it in Fig. 8. We observe that about 80% of intra-domain
and 85% of inter-domain path segments (updated more
than 10 times) have r less than 10 ms, while 0.025% of in-
tra-domain and 0.013% of inter-domain segments have r
larger than 100 ms.

Given the variability in the data, we need to decide
which delay our algorithm should return for a given path.
Some application need the most up-to-date information
about delay while others [35] are more interested in the
trend (for which the median delay would be useful).

Our algorithm is agnostic to the choice. We leave the
choice to the application and our query results contain
both the median and the most recent measurements.
6.3.2. Nondecreasing delay principle
Delay reported at every hop in traceroute should be

strictly nondecreasing. However, we observe a large num-
ber of traceroute outputs that break this principle. Let us
consider the following example:
Traceroute results from 143.248.140.1 to
128.32.255.43
1
 143.248.140.1
 0.236
 A

2
 143.248.117.114
 0.290
 A

3
 143.248.117.18
 0.358
 A

4
 143.248.119.2
 0.487
 A

5
 134.75.20.70
 0.612
 B

6
 134.75.108.210
 114.918
 B

7
 207.231.245.129
 289.926
 C

8
 137.164.27.134
 133.526
 D

9
 128.32.0.35
 133.653
 E

10
 128.32.255.43
 133.401
 E
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When building the path segment repository, we break
this 10-hop IP path into 7 path segments. During this pro-

cess, we calculate delay of each segment relative to the
segment’s first hop latency. For example, delay of the 2-
hop path segment (hop 5, hop 6) of B: is 114.306 by sub-
tracting the first hop latency, 0.612. However, the delay
for the next segment (hop 6, hop 7) becomes 175.008
and that for (hop 7, hop 8) becomes �156.4. A negative de-
lay of a segment in the middle is very likely an artifact of
processing overhead at a router 207.231.245.129. Katz-
Bassett et al. also found that the return path hindered by
traditional traceroute mechanism can cause the delay
inflation [36]. In the above example, the return path from
207.231.245.129 to the source can lead to much higher la-
tency than from other hops.

Since we use traceroute outputs, we are inherently con-
strained by the idiosyncrasies that stem from traceroute
[37]. One solution could be to seek other data sets that
explicitly measure one-way delays. However, lacking the
additional data, we adopt a very simple heuristic to deal
with occasional spikes in traceroute-based delay measure-
ments by forcing the measured delays to be strictly nonde-
creasing. For ease of explanation, we plot the delays from
the above traceroute output against the hop number in
Fig. 9. The dotted line represents the delays from tracero-
ute. If the difference in delay between two adjacent hops
(hops 7 and 8 in Fig. 9) is below zero, we calculate the dif-
ferences between the latter hop and preceding hops (be-
tween 8 and 6, 8 and 5, and so on), and find the first hop
of positive difference (hop 6). Delays from all those hops
in between (hop 7) are considered outliers and removed.
We then draw a straight line over the outliers (between
hops 6 and 8) and extrapolate delays from the line (the so-
lid line in the figure). This simple heuristic has allowed us
to retain 60% of Ark data.

6.4. Summary

In this section, we have reviewed three sources of error
in our methodology: IP-to-AS mapping, AS path inference,
and traceroute-based delay measurement. For errors in IP-
to-AS mapping, we propose to incorporate all possible
combinations so that we do not lose connectivity informa-
tion between ASes. In order to improve the accuracy in AS
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Fig. 9. Filtering outliers in traceroute delays.
path inference, we glean inter-AS segments from tracero-
ute data to exploit knowledge of the first hop AS. For delay
measurements that contain segments of negative delay, we
propose a simple heuristic to extrapolate reasonable esti-
mates and retain this way more than half of the original
Ark data.
7. Evaluation

In this section we demonstrate step-by-step how esti-
mates from our path stitching fare in comparison to on-
the-spot actual measurements. For the evaluation, we use
the two sets of measurements, pl-easy and pl-hard, as
described in Section 2.1. First, we evaluate the overall qual-
ity of AS path inference in Step 2 of path stitching. Then we
show how much value the approximation methods in Sec-
tion 4 bring to Step 3. We employ several rules of prefer-
ence in Step 3 when there are multiple candidate
segments. We demonstrate how each preference rule re-
duces deviation in delay estimates from real measure-
ments. As a final part in evaluation, we compare our
results against iPlane [2]. Then, we conclude the section
with a brief discussion on the Internet-wide coverage of
the path stitching.
7.1. AS path accuracy

The accuracy of inferred AS paths is critical to our meth-
odology. In Section 6.2 we have proposed to augment
KnownPath [9] with AS path information we glean from
Ark traceroute outputs. In this section we show the mar-
ginal utility of the traceroute data on the quality of AS path
inference.

For every pair of source and destination hosts in pl-

easy and pl-hard, we execute Steps 1 and 2 of our algo-
rithm and obtain inferred AS paths. We produce inferred AS
path both using vanilla KnownPath (i.e., using only BGP
routing tables) and with the first AS hop information de-
rived from the Ark data set. For all pairs in pl-easy and
pl-hard we also have the actual measured AS paths.

In order to quantify the accuracy of the inferred AS path
we use the Jaccard similarity coefficient as in [38]. It con-
siders an AS path as a set of ASes, and calculates the simi-
larity as the ratio of the number of common ASes to the
number of ASes in the union of the two AS paths.

Fig. 10 shows the AS path similarity on the two datasets.
The most striking result comes from pl-easy. When va-
nilla KnownPath is used, only 18% of inferred AS paths
are exact matches of the measured AS paths. When
KnownPath is augmented using traceroute data, the exact
matches jump to 72%. This improvement shows the poten-
tial value of the additional information. Improvement in AS
path similarity for the other set, pl-hard, is not as great as
in pl-easy: only from 19% to 26%. Further investigation
reveals that for the host pairs in pl-hard there is no first
AS hop information from our Ark data set. For the remain-
ing 74% of partially matched paths in pl-hard, 77% in-
ferred paths are equal to or shorter than the actual AS
paths, and for the 44% shorter paths, 18% of them are a
proper subsets of the corresponding actual paths. In the
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rest of this section all inferred AS paths are from aug-
mented KnownPath.
7.2. Approximation methods

The goal of the approximation methods in Section 4 is
to produce approximate stitched paths in the face of no
stitched path. In this section we show how many more
paths the approximation methods allow to find.

For both sets of pl-easy and pl-hard we stitch path
segments along the measured AS paths and inferred AS
paths and work with the following four cases: pl-easy
with the measured AS paths, pl-easy with the inferred
AS paths, pl-hard with the measured AS paths, and pl-

hard with the inferred AS paths. We compute the fraction
of pairs that find stitched paths without any approxima-
tion. Then we apply approximation methods one by one
(from the most to the least stringent): reverse path seg-
ments, router-level and PoP-level clustering, clustering by
the /28, /24, and finally /16 prefix. As predicted, the above
approximation methods, if applied one by one, show incre-
mental improvement in the fraction of pairs with stitched
paths.

The fraction of pairs with stitched paths does not differ
much between the measured and inferred AS path cases of
pl-easy. Because the Ark monitors are co-located with
the source hosts of pl-easy, 70% of inferred AS paths
match the measured AS paths exactly (Fig. 10), and it help
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Fig. 11. Fraction of pairs with stitched paths.
us to have stitched paths for the 86.4% or 399 pairs. Yet for
13.6% or 63 pairs, there exists no stitched path. We have
two explanations for those pairs with which path-stitching
algorithm do not produce the result. For 59 or about 12.8%
of pairs, their AS paths include ASes or inter-AS links that
are not present in the Ark data set. For the remaining 4
or 0.9% of pairs, the path segments cannot be stitched no
matter what clustering we use.

The case of pl-hard is more complicated. When no
approximation is used, only 6% of pairs find stitched paths
with measured AS paths and even less with inferred AS
paths. Considering the fact that no Ark monitor resides in
the same AS as the source hosts in pl-hard, even those
small numbers are surprising. Because those originating
ASes have appeared on some routes in the Ark data set,
the largest increment in the fraction of pairs comes when
we use reverse segments. Further relaxation on clustering
constraints show definite incremental improvement. The
Ark data set covers about half of the ASes observed in
BGP. In order to bring the fraction of pairs with stitched
paths from 70% with measured AS paths and 68% with in-
ferred AS paths to the level of pl-easy, data sets with a
wider coverage of ASes are needed.

Additionally, we repeat the evaluation without router
and PoP-level approximations. Resolving router aliases
and clustering at the PoP-level require a large number of
additional probes. Our interest here is to evaluate our algo-
rithm when those datasets are not available. Indeed, the
additional dataset bring limited benefit: clustering with /
28 and /24 prefix and without router and PoP, we miss only
5 (0.04%) pairs for the pl-hard with measured AS paths
case, and 165 (1.6%) pairs for the pl-hard with inferred
AS paths case. For pl-easy cases, there are no missing
pairs.

As a last note, clustering by /16 prefix does not bring
much gain over clustering by /24 prefix, while the magni-
tudes of prefixes differ greatly. For the rest of this section,
we use clustering by /24 and do not use clustering by /16.
7.3. Evaluation of preference rules

Approximation methods are useful when no stitched
path is found. The opposite case is when there are too
many path segments to stitch. In this section we demon-
strate how each preference rule reduces the number of
candidate path segments, as well as deviation in delay esti-
mates from real measurements.

If an inferred AS path includes a transit AS with a large
number of intra-domain segments, it is not practical to
consider all possible combinations of path segments. In
our path segment repository, the median number of seg-
ments of transit ASes in the Ark data set is 25, and the max-
imum number even reaches 124,317. If an inferred AS path
includes a transit AS with a large number of intra-domain
segments, it is not practical to consider all possible combi-
nations of path segments, for we need just one at the end
of our estimation process. In this section we demonstrate
how each preference rule reduces the number of candidate
path segments, as well as deviation in delay estimates from
real measurements.
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To isolate the effect of preference rules from other
factors, we consider only those host pairs in pl-easy and
pl-hard that find stitched paths without any approximation
method. We are left with 393 pl-easy pairs and 572
pl-hard pairs. We do not use the inferred AS path, but
use the measured AS paths.

In Fig. 12 we draw the cumulative distribution function
of the number of stitched paths per host pair. The dotted
line marked ‘raw’ represents the total number of stitched
paths before we apply any preference rule. We see that al-
most 60% of host pairs have 500 or more stitched paths.
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Fig. 13. Improvement in delay estimation.
Now we apply the preference rules of proximity and desti-
nation-bound path segments and see the number of
stitched paths decrease greatly. Still, about 30% of host
pairs have about 100 or more stitched paths. Only when
we use the segments of most recent measurement, we
see the number of stitched paths drop to 1 for almost all
pairs. Just a few pairs have more than 1 stitched paths,
for traceroute outputs are timestamped with the 1 s gran-
ularity and some segments have the same time stamps.

We have shown that the preference rules are effective
in reducing the number of stitched paths and thus speed-
ing up the estimation process greatly. Now we are inter-
ested to see if the reduction in stitched paths has any
impact on the quality of delay estimates.

In Fig. 13 we plot the minimum and maximum delay
estimates of all stitched paths per query against actual
measurements. For the ease of illustration, we peg the
minimum of measured delays to 0 ms in Fig. 13. We draw
the difference between the maximum and minimum mea-
sured delay as a dashed line. It represents variability in ac-
tual measurements. Values that fall between the dashed
line and the horizontal line of 0 ms delay are basically
indistinguishable from real measurements.

We evaluate the following two combinations of prefer-
ence rules: (i) only with the proximity and destination-
bound prefixes and (ii) with the first two plus the most re-
cently updated segments. The colors in the bar graph light-
ens as more preference rules apply. The lightening trend in
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Fig. 15. Relative error vs. absolute error.

5 Available from http://iplane.cs.washington.edu.
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colors indicates that our preference rules not only reduce
the number of stitched paths, but also bring the estimates
close to the actual measurements.

For more than 100 pairs in both pl-easy and pl-hard

the difference between the minimum and maximum mea-
sured delays grows beyond 100 ms. What is the best esti-
mate when actual measurements exhibit such large
variability? We leave this choice to the users of our path
stitching. We conduct our evaluation with the most recent
measurements, but will leave options for users to obtain
other metrics about the stitched path when we implement
path stitching as a system.

We summarize the trend in Fig. 13 by plotting the
cumulative distribution of absolute errors in Fig. 14. By
absolute error we mean the sum of delay estimates that fall
outside the minimum and maximum measurements. If
both the minimum and maximum estimates both fall
within the dashed lines, then we consider the absolute er-
ror to be 0 (i.e., the stitched paths are as good as the actual
measurements). Fig. 14 shows that the absolute error is the
smallest when all the three rules of preference are used.
Only 10% of pairs have absolute error greater than 20 ms.
We observe very similar improvement in delay estimation
with preference rules in pl-hard.

Finally, we investigate whether improvements in abso-
lute errors reflect similar improvements in relative errors.
We define the relative error as the absolute error divided
by the minimum delay measurement (the value that maps
to the x = 0 for each host pair) and scatter-plot it in Fig. 15.
From left to right, more preference rules are applied and
the spread of relative errors diminishes for both pl-easy

and pl-hard.
We conclude that preference rules are effective in
reducing the number of stitched paths, and at the same
time bring delay estimates close to the actual measure-
ments in both absolute and relative errors.
7.4. Comparison with iPlane

In this section we compare our methodology against
iPlane. Most latency prediction systems based on network
coordinates require ideally ‘full-mesh’ type of measure-
ments between participating nodes. In order to converge
the coordinate system to a steady state, at least the latency
measurements between the reference points (e.g., land-
mark nodes) and the latencies between reference points
and the other participating nodes are needed [39]. We
found that the existing network coordinate systems are
not amenable to take the Ark data set as input [5].

We choose to compare our algorithm to iPlane [2] that
uses a similar structural approach to latency prediction
and it has been shown to provide more accurate results
than other solutions [5,6]. iPlane reports an absolute la-
tency error of less than 20 ms for 77% of paths. In our case
pl-easy shows less than 20 ms for 90% of the pairs
(Fig. 14), while pl-hard return errors below 20 ms for
80% of pairs.

For more detailed comparison, we use iPlane to process
our data set and examine the outcome. We obtained the
binary code of the iPlane system and fed our Ark data set
to it and in addition related data5 (PoP and router-level

http://iplane.cs.washington.edu


DK Lee et al. / Computer Networks 55 (2011) 838–855 851
clustering information and IP-to-AS mapping) collected
during the same measurement period as the Ark data set.
By doing so, we effectively turn the Ark monitors to iPlane
vantage points. The current implementation of iPlane has
more than 100 vantage points and they together combined
probe every BGP atom [40]. We use pl-easy and pl-hard

query sets for the evaluation.
First, we examine the number of successful answers.

Our numbers are 367 with /24 clustering and inferred AS
paths in pl-easy and 6103 with the same combination
in pl-hard, while iPlane returns 325 out of 462 in pl-

easy and 5109 out of 10,077 in pl-hard. With measured
AS paths, we got 399 and 7048, respectively (see Fig. 11).
We find the numbers comparable and for the rest of the
evaluation, we use only those pairs that both iPlane and
our path stitching return answers.

In Fig. 16 we plot the CDF of absolute errors. In the case
of pl-easy (top graph), we only show results with /24
clustering because other approximation methods return
almost the same results. Path stitching reports consistently
smaller absolute errors. We note that the iPlane perfor-
mance observed in Fig. 16 is comparable to the best case
reported in Fig. 4 of [38]. As we have seen in Fig. 11 a rel-
atively large fraction of pairs are stitched with approxima-
tion methods in the case of pl-hard. Therefore, we draw
separate graphs for pairs with different approximation
methods. We draw a graph for the results with the router
and PoP clustering and with the /24 prefix-level clustering.
Overall, path stitching shows consistently better perfor-
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Fig. 16. Absolute errors.
mance with very small absolute errors (below 5 ms.) Path
stitching with router and PoP clustering performs very
close to iPlane below 35 ms, and gradually shows better
performance afterwards. Path stitching with inferred AS
path and /24 clustering shows better performance than
iPlane only after 50 ms. In both plots of pl-easy and
pl-hard the performance of iPlane does not improve
much beyond 50 ms. As we do not have access to the
source code, we cannot provide further explanation. One
conjecture we have is iPlane does not incorporate any data
filtering mechanisms, as suggested in [41] or in Sec-
tion 6.3.2, and anomalously large delays could have an im-
pact on the tail of the distribution.

In Fig. 17 we plot the relative errors. In the case of pl-
easy, 90% of pairs have relative errors smaller than 0.4 in
path stitching, while relative errors in iPlane do not change
much beyond 1. As in the case of absolute errors, iPlane
performs better in pl-hard up to relative errors of 0.6
than path stitching with /24 clustering and inferred AS
paths, but otherwise path stitching shows better perfor-
mance. In both Fig. 17(a) and (b) relative errors of iPlane
do not converge. We proffer the same lack of data filtering
mechanisms as an explanation.

7.5. Coverage for the random host pairs

So far, we have demonstrated step-by-step how
estimates from our path stitching fare in comparison to
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Relative errors

path stitching w/ measured AS path
path stitching w/ inferred AS path
iPlane

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative errors

C
D

F

path stitching w/ measured AS path + roueter/PoP
path stitching w/ measured AS path + prefix/24
path stitching w/ inferred AS path + roueter/PoP
path stitching w/ inferred AS path + prefix/24
iPlane

Fig. 17. Relative errors.



Ark Ark+iPlane Ark+DIMES DIMES+iPlane Ark+iPlane+DIMES
0

5

10

15

20

25

30

35

40

Fr
ac

tio
n 

of
 u

n−
st

itc
ha

bl
e 

pa
irs

 (%
) Total

Missing ASes
Missing Inter−AS links

Fig. 18. Fraction of random host pairs for which path stitching cannot
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on-the-spot actual measurements. Now we are interested
in how many arbitrary Internet host pairs will be covered
(or answered) by the path-stitching algorithm with exist-
ing measurements.

In Sections 4 and 7.2, we have shown that Ark data set
covers only half of the ASes observed in BGP, and 12.8% of
pl-easy pairs and 25.9% of pl-hard pairs cannot be
stitched because their AS paths include ASes or inter-AS
links that are not present in the Ark data set. In order to in-
crease the fraction of pairs with stitched paths, we have
noted that data sets with a wider coverage of ASes are
needed.

In this section we incorporate the Ark data set with
other publicly available traceroute repositories, iPlane [2]
and DIMES [22], to show the coverage improve. iPlane’s
traceroute measurement is similar to Ark, but has broader
set of sources operated on the PlanetLab nodes. From
iPlane’s traceroutes archive, we download trace.out files
during the same period as the Ark data (from April 7th to
9th, 2008.) DIMES compliments Ark-like centralized data
collection by endorsing volunteers who contribute tracero-
ute and ping outputs originating from their machines.
DIMES publishes AS-level and IP-level delay and topology
data sets on a monthly basis. We use data sets on April,
2008. Table 5 summarizes the AS-level characteristics of
each data set. Even if we incorporate all data sets, we are
still missing 4.5% (217) of the transit ASes and 19.7%
(4,613) of the stub ASes.

To model the measurement requests by a real network-
ing application, we extract all routed /24 IP prefixes (1.67
million prefixes) from the BGP table, we then randomly
choose 10,000 unique pairs of source and destination
prefixes that covers 3,072 ASes (1,523 transit ASes and
1,549 stub ASes) and 5,946 Inter-AS links. With those
10,000 randomly chosen prefix pairs, we show how much
fraction of the pairs are not covered with the following five
cases: Ark, Ark + iPlane, Ark + DIMES, DIMES + iPlane, and
Ark + iPlane + DIMES.

Fig. 18 summarizes the results. With the Ark data set,
36.75% or 3,675 pairs are not covered. We have two expla-
nations. For 10.36% or 1,036 pairs, their inferred AS paths
include ASes that are not present in the Ark data set.
Remaining 26.39% or 2,639 pairs are not stitched because
of the missing AS-links in the Ark data set. We also note
that those numbers are comparable to the case of pl-hard
pairs with the inferred AS paths in Section 7.2.

Incorporations of two out of three repositories show
consistently better performance than the Ark case. It
Table 5
Number of ASes in Ark, iPlane, DIMES, and BGP data sets.

Data type Total
AS

Transit
AS

Stub
AS

Total AS
links

BGP 28,244 4,847 23,397 –
Ark 14,378 4,418 9,960 61,606
iPlane 20,695 4,507 16,188 119,337
DIMES 19,807 4,462 15,345 59,676
Ark + iPlane 22,019 4,589 17,430 137,602
Ark + DIMES 21,558 4,593 16,965 94,556
iPlane + DIMES 22,744 4,596 18,148 137,987
Ark + iPlane + DIMES 23,414 4,630 18,784 153,497
shows the definite incremental improvement with the
additional information. Ark with DIMES shows slightly
worse performance (24.62% pairs are not covered) than
others, and it is mainly caused by the lacking inter-AS
links. Finally, when we incorporate all three repositories
we see that 85.18% or 8,518 out of 10,000 pairs are success-
fully covered. Further investigation reveals that the
remaining 14.82% or 1,482 pairs will be covered by aug-
menting 231 missing ASes and 745 missing AS-links. We
leave incorporating those missing ASes and AS-links as
part of our future work.
8. Related work

8.1. Internet-wide measurements

CAIDA’s Ark project is the successor of Skitter and main-
tains a repository of 10 years worth traceroute outputs
from tens of sources to every /24 prefix [21]. Its data has
been shared widely by the research community [2]. DIMES
expands the coverage of Ark-like centralized data collec-
tion by endorsing volunteers who contribute traceroute
outputs originating from their machines [39]. DIMES com-
pliments Ark with measurements originating from mostly
stub networks. However, it has been shown that additional
end-to-end path measurements have to be carefully cho-
sen to bring in significant improvements in terms of net-
work coverage [42]. In order to avoid measuring every
path, NetQuest suggests a Bayesian experimental design
in choosing active measurements for maximum informa-
tion [43]. Donnet et al. proposes a tree-based exploration
of the topology in order to reduce measurement traffic
[44].

RouteViews [14] and RIPE RIS [15] are the major
sources of Internet routing information. They store snap-
shots and updates of the border gateway protocol (BGP)
routing protocol contributed by many ISPs.

All these studies employ various measurement tech-
niques to derive Internet-wide performance characteris-
tics. In our work, we focus on retrieving relevant data
from these existing measurements.
8.2. Network performance estimation

Instead of taking measurements over every path,
researchers have looked into estimation methodologies
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from a limited number of measurements. One approach is
to use landmarks for estimating network distances be-
tween two arbitrary Internet hosts. IDMaps deploys land-
marks (or tracers) that measure distances between
themselves [45]. For the distance between two end hosts,
IDMaps selects two nearest landmarks to the source and
the destination, and returns the sum of the distances be-
tween the hosts and their selected landmarks, and be-
tween two selected landmarks. DDM is similar to IDMaps
but organizes landmarks into hierarchy to locate the near-
est landmarks efficiently [46]. King exploits DNS servers as
their landmarks [47].

Another approach to Internet distance estimation is
network embedding. The main idea of this technique lies
in reducing the dimension of collected measurements to
a low dimensional space of the Internet hosts; thus the
name, ‘‘network coordinates [48,49].” PIC [50], NPS [39],
and Vivaldi [5] take one step further and propose a decen-
tralized approach where each participating host measures
and shares the information with other hosts (or peers).
More recently, Agarwal et al. combine network embedding
with geolocation, by initializing network coordinates to the
actual locations of the nodes [51]. Their approach shows
improvement in convergence time and delay prediction
error.

The complexity and inaccuracy incurred by network
embedding techniques have been analyzed in [52,53] and
in part motivated a structural approach to measurements
[4,38]. In particular, Abrahao et al. points out a possible
reduction in dimensionality when delay within an AS is
considered. Our AS-based segmentation and stitching ap-
proach aligns well with this insight [53].

8.3. Network performance estimation as a service

In today’s distributed applications, network perfor-
mance data sharing among end users is limited. Aggarwal
et al. have proposed an oracle service hosted by ISPs [54].
This oracle service ranks the queried peers according to
certain metrics such as the number of AS hops to the users.
ISPs do not need to measure performance, as they already
have direct access to customers’ bandwidth and link delay
information. The oracle service is mostly for peer-to-peer
applications and relies on peer-to-peer applications to re-
spect the ranking. Madhyastha et al. [2] have end hosts
run active measurements and return estimated latency,
loss rate, and capacity to their iPlane system in order to
construct an annotated atlas of the Internet. Our work is
a founding block to a network-wide estimation service
similar in spirit to the above two services.

9. Conclusion

In this work, we have presented and evaluated path
stitching, a new approach to end-to-end Internet perfor-
mance estimation. Existing measurement systems are nat-
urally limited by the number of available vantage points.
Instead of deploying yet another measurement system,
we have described how multiple data sets from existing
infrastructures can be used together to provide relatively
accurate performance measurements of uncharted por-
tions of the Internet. We show that our path stitching ap-
proach performs comparably to existing measurement
systems that require extensive new data collection campaigns.

Future work will focus on incorporating additional
datasets and focus on other metrics of interest to distrib-
uted applications such as loss rate, available bandwidth,
etc. We also plan to demonstrate the impact of path stitch-
ing in the development and performance of common dis-
tributed applications. In that context we are currently
working on a DNS-like interface that would allow existing
distributed application to issue queries about end-to-end
path quality and performance. This would allow to better
understand the real impact of estimate errors on the end-
user experience.
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