
Accelerating SSL with GPUs

Keon Jang* Sangjin Han* Seungyeop Han† Sue Moon* KyoungSoo Park**
*Department of Computer Science, KAIST, Korea

{keonjang, sangjin}@an.kaist.ac.kr, sbmoon@kaist.edu
†Department of Computer Science & Engineering, University of Washington

syhan@cs.washington.edu
**Department of Electrical Engineering, KAIST, Korea

kyoungsoo@ee.kaist.ac.kr

ABSTRACT
SSL/TLS is a standard protocol for secure Internet communication.
Despite its great success, today’s SSL deployment is largely lim-
ited to security-critical domains. The low adoption rate of SSL is
mainly due to high computation overhead on the server side.

In this paper, we propose Graphics Processing Units (GPUs) as a
new source of computing power to reduce the server-side overhead.
We have designed and implemented an SSL proxy that opportunis-
tically offloads cryptographic operations to GPUs. The evaluation
results show that our GPU implementation of cryptographic oper-
ations, RSA, AES, and HMAC-SHA1, achieves high throughput
while keeping the latency low. The SSL proxy significantly boosts
the throughput of SSL transactions, handling 21.5K SSL transac-
tions per second, and has comparable response time even when
overloaded.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection; C.2.1 [Network Archi-
tecture and Design]: Network communications

General Terms
Design, experimentation, performance

Keywords
SSL, CUDA, GPU

1. INTRODUCTION
Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

have served as a secure communication channel in the Internet for
the past 15 years. SSL provides secure communication against
eavesdropping, and enables authentication of end hosts. Nowadays,
SSL plays an essential role in online-banking, e-commerce, and
other Internet services to protect passwords, credit card numbers,
social security numbers and other private information. Despite its
great success, today’s SSL deployment is limited to security-critical
domains. The number of SSL-enabled websites is slightly over one
million [1], which reflects only about 0.5% of 200 million active
Internet domains [2].

The primary reason behind the low SSL adoption lies in high
computation overhead in the server side. For each SSL connec-
tion, the server has to perform key exchange that involves expensive

Copyright is held by the author/owner(s).
This is a minor revision of the work published in SIGCOMM ’10
http://doi.acm.org/10.1145/1851275.1851250.

public-key cryptography. Public-key decryption quickly becomes
the bottleneck when a large number of connections have to be es-
tablished at the server side [3, 4]. For instance, even the state-of-
the-art CPU core can handle only about 1,000 HTTPS transactions
per second (TPS) with 1024-bit RSA while the same core can serve
over 10,000 plain HTTP TPS.

To scale the server-side SSL computation, we propose Graph-
ics Processing Units (GPUs) as a new source of computing power
to offload cryptographic operations from CPU. While GPUs have
demonstrated significant throughput improvement in cryptographic
operations [5,6], high latency remains as a challenge and is not yet
practical in interactive environments [6].

In this work we implement an SSL-accelerator with GPU work-
ing as a proxy for web servers, and show that GPUs accelerate
SSL with small latency overhead while significantly boosting the
throughput at the same time. To achieve low latency and high
throughput, we design and implement opportunistic offloading al-
gorithms to balance the load between GPU and CPU in SSL pro-
cessing. For light workload, we use CPU for low latency, and, when
the load increases, we offload cryptographic operations to GPUs to
improve throughput with GPU’s massive parallelism.

2. A CASE FOR GPU-ACCELERATED SSL
SSL uses three different algorithms for secure communication.

At the beginning, a client and a server exchange randomly gener-
ated secrets using an asymmetric cipher. Asymmetric ciphers (e.g.,
RSA, DSA, or DHE) guarantee the secure exchange of the secrets
even when an attacker is eavesdropping. After the exchange of se-
crets, the server and the client generate session keys for symmetric
ciphers (e.g., AES, DES, or RC4) and authentication algorithms
(e.g., SHA1 or MD5). Symmetric ciphers are used to encrypt the
data, and authentication algorithms are used to prevent tampering.

For small SSL transactions, the asymmetric cipher takes up most
of the computation, and for large transactions, the symmetric ci-
pher and authentication algorithm consume the most computation.
We implement cryptographic operations in GPU and evaluate the
effectiveness for SSL acceleration. We choose RSA, AES128-CBC
(Cipher-Block Chaining), and HMAC-SHA1 (Hash-based Message
Authentication Code), one of the most popular cipher suites in SSL.

GPUs achieve high computing power with hundreds of process-
ing cores and large memory bandwidth, being able to run thousands
of hardware threads in parallel. At the coarse-grained level each
SSL transaction can run in parallel. At the fine-grained level the
cipher algorithm itself may process input data in parallel.

RSA operations rely heavily on the large integer arithmetic such
as 1024-bit integer multiplication. Large integer arithmetic is di-
vided into series of native integer operations and executed serially

1024-bit 2048-bit 4096-bit

GPU thruput 66,970 msg/s 9,995 msg/s 1,348 msg/s
CPU thruput 7,974 msg/s 1,280 msg/s 164 msg/s

(a) RSA throughput

AES-ENC AES-DEC HMAC-SHA1

GPU thruput 9,245 Mbps 9,342 Mbps 27,893 Mbps
CPU thruput 4,620 Mbps 4,620 Mbps 10,429 Mbps

(b) AES 128-bit CBC and HMAC SHA1 throughput
Table 1: Performance comparison of RSA, AES, and HMAC-SHA1
on NVIDIA GTX480 and Intel Xeon X5550 (with all four cores)

in CPU. In GPU, each independent operation can run in parallel.
We implement a parallel algorithm with O(k) time complexity for
multiplication of two k-bit integers.

In AES128-CBC encryption, there is no parallelism in the algo-
rithm itself as encryption of each AES block of 128 bits or 16B
depends on the previous block’s encrypted results. On the other
hand, AES-128CBC decryption can be parallelized at the block
level. HMAC-SHA1 algorithm cannot be parallelized at the block
level due to data dependency between blocks and we parallelize
HMAC-SHA1 at the SSL record level. We omit further implemen-
tation details due to space limitation.

In Table 1, we show the performance of our GPU implementation
as well as CPU performance measured with OpenSSL 1.0.0. We
use NVIDIA GTX480 and Intel Xeon X5550 (hexa-core 2.66Ghz).
For AES and HMAC evaluation we used 16KB flows. We vary the
number of concurrent flows and the batch size for each execution
in GPU and show the peak throughput.

The RSA throughput is above 63K msg/s with GTX480. CPU
performs about 8,00 msg/s with all four cores, and our GPU im-
plementation is more than 8 times faster than CPU. Even at the
peak throughput, latency is under 23 ms. The latency is two orders
of magnitude lower than previous work [6] at peak.

GTX480 achieves over 10 Gbps for AES encryption and decryp-
tion, and 28 Gbps for HMAC-SHA1, faster than CPU by more than
a factor of two. The peak throughput is reached at the latency under
60 ms, 4 ms, and 10 ms, respectively; reasonable for interactive ap-
plications. AES encryption takes much longer than decryption due
to lack of parallelism as explained earlier. Since AES variations
such as AES-CTR (Counter Mode) or AES-GCM (Galois/Counter
Mode) are parallelizable at the block level, we believe we can re-
duce the latency farther than our AES128-CBC. We are currently
implementing AES-GCM.

3. BASIC DESIGN AND IMPLEMENTATION
Based on our cryptographic algorithms on GPU, we implement

an SSL proxy. We choose to implement the SSL proxy instead of
a GPU-based crypto library or an OpenSSL engine for two rea-
sons: (i) ease of integration with existing servers and (ii) support
for event-driven applications blocking on cryptographic operations.

We design a simple and novel opportunistic offloading algorithm
to achieve high throughput while keeping the latency low. The key
idea is to send all requests to CPU when the number of pending
cryptographic operations is small enough to be handled by CPU. If
requests begin to pile up in the queue, then the algorithm offloads
cryptographic operations to GPUs and benefits from parallel exe-
cution for high throughput.

4. PRELIMINARY RESULTS
We show preliminary results from our SSL proxy implemen-

tation. We run experiments with a dual Intel X5550 (total of 8

Target TPS

lighttpd with OpenSSL 1.0.0 9,246
SSLShader 21,579

Table 2: Maximum transactions per second

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

C
D

F
(%

)

Response Time(ms)

SSLShader(1K TPS)

lighttpd(1K TPS)

SSLShader(21K TPS)

lighttpd(9K TPS)

93ms 7ms 325ms 15ms

105ms 64ms 2.9ms 2.1ms

99th%

50th%

Figure 1: Response time distribution (Number in the parenthesis in-
dicates offered load in HTTPS requests per seconds)

cores) system with two NVIDIA GTX480 cards. For comparison,
we measure the performance of lighttpd 1.4.26 with OpenSSL
1.0.0. All experiments use 1024 bit RSA, 128 bit AES-CBC, and
HMAC-SHA1 as the SSL cipher suite. In SSLShader case, we run
our SSLShader and the lighttpd webserver in the same machine.

In Table 2, we compare the TPS numbers with 1B content size
for three different configurations. We see that 21.5K TPS is achieved
with GPU acceleration, while lighttpd performs about 9K TPS. We
analyze the CPU consumption with oprofile and find that the bot-
tleneck is in the Linux kernel, consuming 50 to 60% of the CPU
cycles for TCP/IP processing. Particularly, TCP connection estab-
lishment handling in the kernel does not scale with the number of
CPU cores.

In Figure 1 we plot the response time distribution by varying the
TPS. When the offered load is 1K TPS, the GPU-accelerated SSL
proxy shows less than 1 ms higher response time for 90% of trans-
actions due to its proxying overhead, however it shows lower 99%
percentile response time. It clearly shows that SSLShader inten-
tionally use CPU when the load is light. We also measure response
time for overloaded cases. We offered 9 K TPS for lighttpd and
21 K TPS for SSLShader which are almost the maximum through-
puts. SSLShader shows lower response time while achieving much
higher throughput. These results demonstrates that our opportunis-
tic offloading algorithm balances the load between CPU and GPU
effectively depending on the load. We have observed that GPU is
not fully utilized due to the bottleneck at connection handling in
the Linux kernel. We plan to look into ways to remove the TCP/IP
stack bottleneck for further performance improvement.

5. ACKNOWLEDGEMENT
This research was funded by NAP of Korea Research Council

of Fundamental Science & Technology, and MKE (Ministry of
Knowledge Economy of Repbulic of Korea, project no. N02100053).

6. REFERENCES
[1] Netcraft SSL Survey. http://news.netcraft.com/SSL-survey, 2009.
[2] Netcraft Web Server Survey. http://news.netcraft.com/archives/2010/

04/15/april_2010_web_server_survey.html, 2009.
[3] C. Coarfa, P. Druschel, and D. S. Wallach. Performance Analysis of TLS Web

Servers. In NDSS, 2002.
[4] G. Apostolopoulos et al. Transport Layer Security: How much does it really

cost? In IEEE Infocom, 1999.
[5] O. Harrison and J. Waldron. Practical Symmetric Key Cryptography on Modern

Graphics Hardware. In USENIX Security, 2008.
[6] O. Harrison and J. Waldron. Efficient Acceleration of Asymmetric

Cryptography on Graphics Hardware. In Africacrypt, 2009.

