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ABSTRACT

With the introduction of cellular phones, mobile wireless
communication has become an integral part of day-to-day
life in this century. A testbed is crucial in continuing cutting-
edge wireless technology research and development since
physical and MAC layers in mobile wireless communica-
tion have many parameters pertinent to performance that are
often not tractable in analysis or simulation alone. Although
many wireless testbeds have been built, most are not gen-
eral purpose, have a limited access policy, or focus on single
technologies like WiFi. In this paper, we present the im-
plementation and evaluation of a mobile testbed node. This
node will be the founding block of a mobile wireless testbed
that we envision to be as open as PlanetLab to researchers.

1. INTRODUCTION

With the introduction of cellular phones, mobile wireless
communication has become an integral part of day-to-day
life in this century. The competition for the mobile wireless
communication market is fierce; so are the investment and
drive for new mobile wireless technologies with lower la-
tency and higher bandwidth. As physical and MAC layers in
mobile wireless communication have many parameters per-
tinent to performance that are often not tractable in analysis
or simulation alone, a testbed is an integral part in cutting-
edge wireless technology development.

A wide range of wireless testbeds have been built in the
past: WiFi mesh networks [6, 4], sensor networks [18, 10],
long-range multi-hop wireless networks [21], just to name a
few. But only a few include mobility in the design. Explore-
bots [9] and Mobile Emulab [17] offer indoor testbeds with
robots mounted with wireless communication interfaces. The
Kiosknet project at the University of Waterloo [23], the Car-
Tel project at MIT [13], and the DieselNet project at the
University of Massachusetts at Amherst [1] all use WiFi de-
vices mounted on vehicles and have specific design goals.
Ormont et al. have built a city-wide vehicular infrastruc-
ture and conducted wide-area wireless measurement experi-
ments [20]. They mounted laptops on a bus, and the laptops
are equipped with an EV-DO (EVolution-Data Only) 3G mo-
dem and a WiFi interface.
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The outdoor testbeds, with the exception of Mobile Emu-
lab, are not general purpose and have a limited access policy,
typically to the individual research group. For those who are
used to the easy access of PlanetLab or Emulab, obtaining
access is a major deterrent to utilizing such testbeds. This
difficulty has motivated us to build a mobile wireless testbed
that is as open and accessible as PlanetLab and Emulab.

Most wireless testbeds focus on WiFi, and only a small
number of testbeds support commercial mobile wireless tech-
nologies. We design our wireless testbed node to support
various wireless technologies and easily support new tech-
nologies as they come to the market. Due to the prevalence
of Windows in the world, many commercial wireless ser-
vices provide modems only with Windows drivers and led
us to support Windows in our mobile node.

Virtualization is a key technology enabling an open and
shared testbed like PlanetLab or Emulab. PlanetLab uses
container-based virtualization to share a single physical ma-
chine with many users by isolating each user in a sliver.
Container-based virtualization provides high scalability over
hypervisor-based VMMs or hosted VMMs [24], but is lim-
ited to using a single, shared OS kernel for all users. Our mo-
bile node needs to run Windows because some target wire-
less technologies provide only Windows drivers. We design
our mobile node to use a combination of hosted VMM tech-
nology and container-based technology. The basic idea is
to run PlanetLab on top of the Windows OS via VMware
Workstation. This way we do not compromise scalability
and eliminate development cost, but does raise the question
of overhead.

In this paper we present our mobile node design and eval-
uate its performance. Mobile wireless technologies are yet
to support network speeds of 1 Gbps or higher, and modern
multi-core PCs are capable of handling 10Gbps. We eval-
uate our node design using a gigabit Ethernet interface and
show that it can be used to support various wireless experi-
ments simultaneously. This node will be the founding block
of a mobile wireless testbed that we envision to deploy in the
near future.

The rest of paper is organized as follow. We discuss major
challenges and requirements of a mobile node and present
our design of a prototype in Section 2. In Section 3, we ex-



plain details of our implementation and in Section 4 present
preliminary evaluation results. In Section 5 we conclude
with discussions and future work.

2. MOBILE PLANETLAB NODE DESIGN

In this section we outline the design of our mobile wire-
less testbed node, discussing alternatives and the motivations
for our design choices.

2.1 Our Design

As outlined in [16], building a mobile tesbed has different
challenges from a wired testbed. First, the cost of deploy-
ing and maintaining a mobile wireless testbed is very high
and labor intensive. Thus it makes more sense to allow mul-
tiple network interfaces, homogeneous or not, on a single
node, and take advantage of the deployed infrastructure for
maximum utilization. For the same reason, we should make
the testbed as open and publicly available as possible to the
broad research community.

Second, the control channel between a mobile node and
the rest of the testbed or the central control node, if any,
should be reliable, but we cannot depend on reliable com-
munication in mobile wireless networks. GPRS and 3G net-
works exhibit highly variable latency and frequent black-
outs [7, 8]. To address this issue, we consider aggregating
multiple interfaces into one virtual channel. Rodriguez et al.
have proposed a Mobile Access Router (MAR) design that
exploits diversities in technology, networks, and channels,
and demonstrated that MAR achieves zero blackout and high
bandwidth through multiple interface aggregation [22]. In
this work we choose to use a single interface for the control
channel as a first step, and leave multiple interface aggrega-
tion for future work.

PlanetLab is one of the most successful network testbeds
with over 1000 nodes deployed at about 500 sites around
the globe. The simple management framework based on
container-based virtualization and its “bring your own lunch”
participation model have enabled an explosive growth in us-
age, now hosting thousands of services. Its extensive user
base and our familiarity with its management framework
have appealed to us strongly, and we have chosen to use
PlanetLab as a base management framework.

Transplanting PlanetLab into a mobile wireless network
is not straightforward, however. First, PlanetLab was origi-
nally designed with wired networks in mind, and expects a
static IP per node at an Ethernet interface. Most mobile ISPs
offer dynamically allocated IP addresses, and do not offer
static IP addresses at all. We choose to use a proxy node to
relay communication between a mobile wireless PlanetLab
node and MyPLC (a central management node). The proxy
node has a static IP address that MyPLC sees. The details of
the proxy node operation are in Section 3.

The choice of PlanetLab limits us to only a handful of
mobile wireless technologies. PlanetLab is Linux-based, but
many mobile wireless modems come with Windows device

drivers and connection managers only and no Linux support.
In particular, WiBro,! which is the mobile Internet service
with the highest bandwidth at this point, does not provide
a Linux driver or a connection manager.” Worse yet, some
HSDPA modems are configured as serial modems and do not
work as an Ethernet interface; as a result, PlanetLab nodes
cannot boot up through those HSDPA modems.

The prevalence of Windows-based devices has led us to
run Windows and PlanetLab simultaneously on a single ma-
chine. We choose to run PlanetLab on VMware Worksta-
tion [2] in Windows and operate wireless modems in Win-
dows. VMware Workstation is a hosted VMM (Virtual Ma-
chine Monitor) that allows multiple operating systems run-
ning on a host OS. An advantage of this architecture is that
we no longer have to worry about acquiring Linux-based de-
vice drivers. The downside is that we compromise the ease
of remote system management since we have to maintain
Windows updates as well as those for PlanetLab. However,
most people would find mobile wireless nodes very hard to
deploy and our testbed is likely to be under single admin-
istrative control. Installation and management of VMware
Workstation and Windows incur extra overhead compared
to vanilla PlanetLab, but are out of the scope of this paper.

We expect users of our mobile testbed to demand exclu-
sive access to modems, if not to the node. To enforce ex-
clusive access per modem, we need network stack isolation.
PlanetLab offers port-based network stack isolation, but not
per modem. Trellis is a PlanetLab-based software platform
used to host multiple virtual networks and implements net-
work stack virtualization. It adopts NetNS [5] and provides
each “container” with its own in-kernel virtual devices and
related data structures. Trellis maps a sliver to a namespace
one-to-one and a namespace can claim any network inter-
faces. Under Trellis, multiple slivers can share a physical
network interface as well. We have chosen to use NetNS
and allow only one NetNS per VNIC. This way we enforce
network stack virtualization and allow per-user exclusive ac-
cess to modems.

2.2 Design Alternatives

A hypervisor-based VMM is another way of running mul-
tiple instances of OSes in a single machine. In hypervisor-
based VMM, there exists a host VM that manages hardware
and multiplexes it to guest OSes. Unlike hosted VMM, the
hypervisor runs below the host OS, and schedules all OSes.
In the hosted VMM '’s case, the host OS manages scheduling
and hardware, and the VMM itself is a process running in
the host OS. Thus a hypervisor-based VMM is thinner and

"WiBro is a WiMax-compatible standard developed and deployed
in South Korea. KT launched WiBro service in 2006, and it cur-
rently covers the greater metropolitan area of Seoul and a few
hotspots in Daejeon and Pohang.

*Running a Windows NDIS driver in Linux using NDIS Wrapper
(http://sourceforge.net/projects/ndiswrapper/) may enable bringing
up the interface, but connecting to the ISPs network requires a Con-
nection Manager.
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Figure 1: Network subsystem of a mobile PlanetLab node

more efficient than hosted VMMs in general.

We choose to use a hosted VMM over a hypervisor-based
VMM for its efficiency in I/O. Wireless modems mostly use
USB these days, and running an USB modem in a virtu-
alized environment incurs overhead of emulating an USB
controller. Iwamatsu reported that an USB 100 Mbps Ether-
net modem in a Xen guest domain requires more than three
times the CPU utilization of running it in the native OS while
achieving 60~70% of native throughput [15]. Our design
of running Windows as a host OS and forwarding network
packets back and forth to a PlanetLab VM avoids the over-
head of USB I/O forwarding.

If individual users can run their own kernel, one can custom-

configure the kernel as necessary. CoreLab is one example
using a hosted VMM, but memory and computation over-
head is substantial when the number of VMMs increases [19].
Although CoreLab’s design provides a flexible environment
for users, we choose to use container-based virtualization for
better scalability.

3. IMPLEMENTATION

In this section we describe the implementation details of
our mobile PlanetLab node design. For concreteness, we as-
sume a node running PlanetLab v4.2 inside VMware Work-
station v6.5 on Windows XP as a host operating system.

The node can have multiple modems and we configure
as many VNICs in VMware one-to-one. We configure one
extra VNIC that is used to communicate with MyPLC and
provide remote access for users. PlanetLab selects the first
VNIC as its main interface to communicate with MyPLC.
We use OpenVPN? to create an Ethernet tunnel between a
PlanetLab node and a proxy server.

We illustrate the above implementation through an exam-

3http://openvpn.net
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Figure 2: Packet encapsulation and decapsulation
through a proxy server

ple in Figure 1. In this example our node has 4 modems
and thus 5 VNICs in VMware. We have implemented the
switching software in Windows that multiplexes and demul-
tiplexes packets between modems and VNICs and call it a
virtual mapper. To map the VNICs in VMware to modems
in Windows, we could employ NAT between them. How-
ever, NAT makes it difficult to accept incoming connections.
Another approach is to assign IP addresses from the same
subnet as the modems’ IP addresses to VNICs, bridge them
to modems, and run the modems in promiscuous mode. How-
ever, no ISPs would allow multiple IP addresses to a single
modem. We have decided to assign the IP address of a mo-
dem to a corresponding VNIC, and let the virtual mapper
intercept packets before they reach Windows and forward
accordingly. We implemented the virtual mapper as an Win-



dows NDIS intermediate driver.*

Use of the virtual switch in VMware and the virtual map-
per in Windows introduces multiplexing and demultiplex-
ing overhead in packet processing. Bhatia ef al. report 10
to 1 performance degradation from raw Linux packet for-
warding to that through Xen [3]. Sugerman ef al. have ex-
perimented with virtual I/O devices on VMware Worksta-
tion and seen five times higher CPU utilization for the same
level of throughput as raw Linux [26]. Their performance
improvement comes from various optimizations to reduce
world switches. Although our system employs two levels of
bridging, the virtual mapper bridging does not involve any
context switching and hence we expect to see negligible ef-
fect on performance.

To relay packets with correct IP addresses, we place a
proxy server with a static IP address somewhere in the In-
ternet and then assign an IP address from the same subnet
as the proxy server to the first VNIC of the PlanetLab node.
This way the PlanetLab node behaves as if it were attached
directly to the same subnet as the proxy server.

We include Figure 2 to demonstrate the operation of a
proxy server. It shows the flow path of a packet from our
node to the destination via the proxy. The packet leaves
PlanetLab with the source IP address of X.3 and the des-
tination Z.2, and with the source MAC address of PL and
destination MAC address of GW, as it is headed towards
the gateway. When the packet passes through OpenVPN,
OpenVPN adds Modem 1°s IP address Y.2 as the source IP
address and the proxy server’s IP address X.2 as the des-
tination IP address. When the packet arrives at the proxy
server, OpenVPN strips off the extra header and transmits
the packet back to the Internet with the original header. As
the proxy server transmits a packet with a source IP address
different from its own, its NIC should operate in promiscu-
ous mode. Communication with MyPLC or for login goes
through the proxy server, but the rest of the experiment traf-
fic is sent out directly to a corresponding wireless modem
without encapsulation.

4. EVALUATION

In previous sections we have presented the network sub-
system design of our mobile PlanetLab node and its imple-
mentation details. In this section we evaluate the perfor-
mance of our mobile node. The key issue is the performance
overhead incurred by running PlanetLab over VMware and
Windows.

The control channel between our mobile PlanetLab node
and MyPLC goes through not only VMware Workstation
and Windows, but also through a proxy server. We do not
treat the control channel as a performance critical path and
we omit its evaluation in this work.

The goal of evaluation is to characterize the additional
overhead that our node implementation incurs by VMware
Workstation, and yet have good networking performance as

*http://msdn.microsoft.com/en-us/library/aa504394.aspx

Item \ Specification
CPU Intel Q9300 2.66Ghz Quad Core
Memory 4GB
VM Memory 2GB
NIC Intel EXPI9400PT 1 GbE

Table 1: Hardware Specification

UDP TCP
Thruput CPU | Thruput CPU
(Mbps) (%) | (Mbps) (%)
PL in VMware 876 204 398 200
Ubuntu in VMware 793 112 525 160
native Ubuntu 954 11 926 24

Table 2: Maximum Achievable Throughput Measured
with and without VMware (100% CPU utlization indi-
cates full utilization of one core)

a mobile wireless node. We measure CPU usage, network
throughput, and latency. Table 4 summarizes the hardware
specification of the machine we used in the experiment. To
measure the latency we use the RDT SC instruction of the
x86 architecture that returns the number of CPU cycles since
machine startup. Modern computers operate at higher than
2 Ghz, and this method gives us latency in nanosecond reso-
lution.

We begin our evaluation with a 1 Gbps Ethernet (GbE)
link instead of wireless modems as a stress test. We connect
a native Ubuntu machine to our mobile node directly via a
cross cable. We use iperf to generate UDP and TCP traf-
fic and measure their throughputs and CPU utilization. For
comparison, we evaluate the same traffic in native Planet-
Lab, native Ubuntu, and Ubuntu in VMware systems. Table
2 summarizes the results of our experiment. All throughput
is received throughput measured at PlanetLab in VMware.
We ran each experiment with 2 GB five times and calculated
the average. We configured VMware to use 2 virtual CPUs.
As expected, native Ubuntu has the best performance with
throughput above 900 Mbps for both UDP and TCP, and
with low CPU utilization. Next, native PlanetLab’s perfor-
mance is close to that of native Ubuntu’s. Our design shows
comparable performance (about 83% of native Ubuntu’s) in
UDP, but only 43% in TCP. The high CPU utilization in the
case of TCP indicates that computational overhead in TCP
processing is the cause behind low TCP performance. Al-
though VMware incurs non-negligible overhead as we ex-
pected, the bandwidth of about 400 Mbps translates to more
than 1 802.11n cards, about 40 WiBro modems [11], or more
than 50 HSDPA modems [14]. It is unlikely to have more
than one WiFi modem on a node, for the testbed is for mo-
bile technologies and WiFi is likely to serve the devices on
a vehicle. Thus we deem the maximum achievable through-
put of about 400 Mbps reasonable. However, the low TCP
performance of our design and Ubuntu in VMware needs



# of processes 0 1 2 3 4 5
send mean | 62 59 62 61 56 60
latency | median | 61 55 58 57 56 56
(us) | 90th% | 74 65 72 69 66 66
recv mean | 163 171 229 206 239 653
latency | median | 156 147 158 155 157 159
(us) | 90th % | 200 189 227 199 205 209

Table 3: Send and receive latency under high CPU load

further investigation.

Next we investigate the VMware overhead on packet pro-
cessing. We modified ping to add timestamps and transmit-
ted one ICMP packet per second for 300 s. Table 3 shows
the measured latency between a packet’s arrival at the vir-
tual mapper to the application within a VM (receive latency)
or the other way around (send latency). We ran 1 to 10
CPU-intensive background processes. The CPU utilization
is 100% when 1 process is running, and 200% for the rest
of the cases. We observe that the send latency is consis-
tently smaller than the receive latency; the median send la-
tency is about a third of receive latency. This outcome is
consistent with previously reported results on native Planet-
Lab [25]. Send or receive latency is mostly not affected by
other processes, but outliers do exist that drive the mean re-
ceive latency high. These outliers are due to timestamping
at the application layer, which introduces large variation in
scheduling. The results demonstrate that the VMware over-
head per packet under high CPU load is not significant.
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Figure 3: TCP throughput under high CPU load

We then investigate the TCP throughput with the same
background processes. Figure 3 shows the measured through-
put from the experiment. Although the receive latency is
higher than the send latency, the receive throughput is higher
than the send throughput when there is no background pro-
cess. VMware Workstation implements packet aggregation
on the receive path to decrease the number of interrupts,
while on the send path this optimization function should lie

Traffic(Mbps) 0 100 200 300 400 500
send mean | 62 49 62 55 49 46
latency | median | 61 38 45 44 40 35
(us) | 90th% | 74 73 93 79 69 54
205 293 276 278
168 217 214 232
323 449 424 500

recv mean | 163 178
latency | median | 156 137
(us) | 90th % | 200 246

Table 4: Send and receive latency under high network
load

in the guest OS driver. We have not included such an opti-
mized driver in our PlanetLab code. This remains yet to be
confirmed. As soon as we add a CPU-intensive background
process, the throughput drops to about 150 Mbps for both
send and receive sides, and it gradually drops to 100 Mbps
as the number of background processes increases to 10. The
number of background processes does not have a big impact
on the TCP throughput since the I/O-intensive processes re-
ceive higher priority in scheduling.

To evaluate the performance of multiple flows through a
single interface, we generate UDP traffic from 0 to 500 Mbps
by 100 Mbps increments, and measure the latency of ping.
Table 4 shows the latency between the virtual mapper and
the application running in a VM in microseconds. Send la-
tency is not affected by background traffic regardless of its
volume. Receive latency increases as the background traffic
increases, but for 90% of cases it stays below 500 ps. Wire-
less technologies other than WiFi typically have latency over
tens of milliseconds, and latency of 500 us should contribute
less than 5% in end-to-end delay.

S. SUMMARY AND FUTURE WORK

We have listed challenges of building a mobile wireless
PlanetLab node and addressed them in our prototype imple-
mentation. Our prototype node uses a combination of Plan-
etLab with VMware Workstation and Windows and provides
network stack isolation to users. The adoption of Windows
as the host OS provides immediate access to a wide range of
mobile wireless modems.

Our VMware-based approach adds overhead of running
PlanetLab as every 1/O operation goes through VMware, re-
quiring a context switch in the CPU. We have evaluated the
performance overhead from VMware by comparing with na-
tive Linux performance using a gigabit Ethernet and a WiFi
modem. There is non-negligible overhead in terms of TCP
throughput degradation and receive latency. Still, a single
machine stands to support a good number of wireless modems.

Running PlanetLab in VMware incurs extra overhead in
installing and managing VMware and Windows in compar-
ison to running simple vanilla PlanetLab. Using commer-
cial software such as Windows and VMware Workstation
adds another dimension. Automating installation and con-
figuration of all necessary software including Windows and
VMware Workstation is not straightforward due to software



license issues.

We have not addressed the mapping between slivers and
namespaces and between namespaces and NICs. As only a
small number of modems can be installed on a node, not all
user demand can be met all the time. We are considering a
reservation system to guarantee time-based exclusive access
to a user. Also if we adopt network aggregation for the con-
trol channel, then we need coordinate control channel traffic
with other users’ demand.

We will install commercial wireless modems on a node.
The cost of wireless services is expensive due to lack of flat-
rate service in South Korea. We are designing an account-
ing system to charge users based on their usage. PlanetLab
currently records all network activity using PlanetFlow [12]
and PlanetFlow is a good candidate component for recording
network usage in our accounting system.

Finally, our next step is to deploy a node in the real world.
We are targeting buses for installation because buses run on a
fixed route, which helps to repeat an experiment, and buses
normally run on a open road and we can use GPS to track
them. We will make our code public so that any researcher
who wants to deploy their own mobile testbed can use our
software.
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