

Path Stitching: Scalable and Systematic

Internet-Wide Path and Delay Estimation from
Existing Measurements

DK Lee* Keon Jang* Changhyun Lee*
KAIST KAIST KAIST

Gianluca Iannaccone†
Intel Research Berkeley

Sue Moon*

KAIST

CS/TR-2009-313

July 24, 2009

K A I S T
Department of Computer Science

* {dklee, keonjang, chlee, sbmoon}@an.kaist.ac.kr

† gianluca.iannaccone@intel.com

Path Stitching: Scalable and Systematic
Internet-Wide Path and Delay Estimation from

Existing Measurements

[CS/TR-2009-313]

DK Lee, Keon Jang, Changhyun Lee, Gianluca Iannaccone†, and Sue Moon
Computer Science Department, KAIST

{dklee, keonjang, chlee, sbmoon}@an.kaist.ac.kr
† Intel Research, Berkeley

gianluca.iannaccone@intel.com

ABSTRACT
Internet-wide services and applications depend on accurate
information about the internal network state to deliver good
performance to end-users. However, today’s Internet does
not provide such information explicitly and a number of sys-
tems have been recently proposed and implemented to pro-
vide a shared measurement infrastructure for distributed ap-
plications [1–4]. The goal of this work is to demonstrate that
without any new measurement infrastructure or active prob-
ing we obtain composite performance estimates from AS-
by-AS segments and the estimates are as good as (or even
better than) those from existing estimation methodologies
that use on-demand, customized active probing. The key
idea behind scaling measurements to the size of the Internet
is to take advantage of the known underlying structure of the
network.

The main contribution of this paper is an estimation algo-
rithm that breaks down measurement data into segments, ef-
ficiently identifies relevant segments, and by carefully stitch-
ing segments together, produces delay and path estimates be-
tween any two end points. Fittingly, we call our algorithm
path stitching. Our results show remarkably good accuracy:
error in delay is below 20 ms in 80% of end-to-end paths. We
show also that our path stitching approach performs com-
parably to existing iPlane without having to instrument any
new measurement node.

1. INTRODUCTION
Internet-wide services and applications depend on accu-

rate information about the internal network state to deliver
good performance to end-users. For example, content dis-
tribution networks use path or delay information to direct
clients to replicas that would provide best performance. Peer-

to-peer VoIP systems (e.g., Skype) have been shown to de-
liver better voice quality when AS path information is taken
into account for selecting peers [5]. However, today’s In-
ternet does not provide such information explicitly and de-
velopers resort to ad-hoc measurement tools to obtain the
necessary data. This poses an additional tax on the develop-
ment cost of new services and applications. For this reason,
a number of systems have been recently proposed and im-
plemented to provide a shared measurement infrastructure
for distributed applications [1–4]. They follow a common
plan of action: (1) define estimation methodologies for de-
lay, path, loss rates, etc.; (2) carefully construct an active
probing strategy and instrument end-systems to collect mea-
surements accordingly.

In this work we diverge from this tradition of active mea-
surement. We are interested in the potential of estimation
methodologies in isolation from data collection. Our goal
is to demonstrate that without any new measurement infras-
tructure or active probing we obtain composite performance
estimates from AS-by-AS segments and the estimates are as
good as (or even better than) those from existing estimation
methodologies that use on-demand, customized active prob-
ing. The key idea behind scaling measurements to the size
of the Internet is to take advantage of the known underlying
structure of the network. Existing approaches in line with
ours are iPlane [1] and Akamai’s core points [6]. They de-
rive estimates by composing performance measures of net-
work segments along the end-to-end path. Our approach dif-
fers from these two in that we construct end-to-end informa-
tion from performance measures segmented by the AS. Let
us illustrate our approach in the following simple example.
Consider a query for some performance metric between two
points x and y in the Internet. Assuming that we have ac-

1

cess to segmented performance measures, we infer the AS
path between the two points and construct the end-to-end
metric corresponding to those ASes on the inferred path.
Our AS-based structural approach to Internet-wide end-to-
end path and delay estimation obliterates the triangular in-
equality problem in network embedding [7].

The main contribution of this paper is an estimation algo-
rithm that breaks down measurement data into segments, ef-
ficiently identifies relevant segments, and by carefully stitch-
ing segments together, produces delay and path estimates be-
tween any two end points. Fittingly, we call our algorithm
path stitching. In this work we use path and round-trip de-
lay as measures of interest for validating our structural ap-
proach.

Our approach is based on the following assumptions: (1)
AS-level path inference is accurate; (2) measurement data
segmented by the AS is readily available; and (3) character-
istics of end-to-end path retain temporal stability. We argue
that these assumptions are reasonable and present surmount-
able challenges. AS path inference has been an active area
of research [8–10] and published methodologies now report
90% accuracy in AS path inference. Numerous end-to-end
measurement data sets are publicly available today [1,11,12]
that we can utilize. Finally, with regard to the third assump-
tion, routes from a single end-host to many destinations are
known to be fairly stable despite Internet’s inherent dynamic
nature [13, 14].

Our results show remarkably good accuracy: error in de-
lay is below 20 ms in 80% of end-to-end paths. We also
present a comparison with iPlane [1], where measurements
are carefully designed from hundreds of vantage points to
maximize accuracy. Path stitching show an accuracy similar
or slightly better than iPlane without having to instrument
any new measurement node.

The accuracy of our path stitching algorithm defines what
is already achievable without instrumenting or deploying any
additional measurement node. We believe it is about time
that we look into the possibility of taking the most out of
existing measurements and their infrastructures, instead of
building yet another measurement system. Our work is a
step towards bringing a diverse set of measurements together
to improve accuracy without additional active measurements.
Path stitching represents a reference baseline valuable when
it comes to understand the benefits (and the costs) of deploy-
ing a new measurement infrastructure.

The rest of the paper is organized as follows. The next
section describes data sets that will be used throughout the
paper. Section 3 presents the path stitching algorithm. Our
approach of segmenting existing measurements and stitch-
ing them up may lead to two complications: there may not
be any valid path between a pair of end systems and we need
to resort to approximation methods (Section 4); or there may
be too many solutions and we need to trim down the list of
candidate paths (Section 5). Also, we must assume that the
source data sets contain inherent measurement errors. Our

algorithm avoids amplifying them by implementing mitiga-
tion techniques (Section 6). Section 7 presents an evaluation
of each step of the algorithm as well as a comparison with
existing path and round-trip delay estimation approaches.
Finally, Section 8 discusses the related work that led us to
this work and Section 9 summarizes our conclusions and
presents future work.

2. DATA
We use three measurement data sets from three indepen-

dent sources: Routeviews [15] and RIPE [16] BGP rout-
ing table snapshots and Ark [12] traceroute outputs. These
datasets are among the largest data archives publicly avail-
able and hold constantly updated information about IP and
AS-level topologies. Thus they provide a good starting point
for our investigation into the feasibility of path stitching.

CAIDA’s Ark project collects traceroutes from 18 mon-
itors to every /24 routable prefix. From Ark, we use one
round (cycle-20080407) of traceroute outputs taken from April
7th to 9th, 2008 (a total of approximately 14 million tracer-
oute outputs).

RouteViews and RIPE are two most widely used repos-
itories of BGP routing table snapshots. We use BGP rout-
ing table snapshots from RouteViews’ BGP listener, route-
views.oregon-ix.net. We also use snapshots from RIPE
NCC Routing Information Service (RIS). RIS operates 14
monitoring points (rrc00 - rc07 and rrc10 - rrc15) and each
monitoring BGP listener peers with different ASes. Both
snapshots are from the same three-day-period as our Ark
data.

2.1 Evaluation Data Set
To evaluate the accuracy of our estimation methodology,

we take direct path and delay measurements between a set of
hosts and compare them against the path stitching estimates.
We ran traceroute 50 times a day between 184 PlanetLab
(PL) nodes during the same period as the Ark data. For 569
pairs we failed to collect any path or delay measurements be-
cause of long-lasting host failures and excluded those pairs
from our data set. We also discard pairs for which tracer-
outes do not reach the destinations. The row planetlab in
Table 1 summarizes the AS-level characteristics of the data
set. Numbers in ()’s represent ASes that appear in the PL
data set but are not covered in the Ark data set. A total of 6
stub ASes are not seen by any of the Ark monitors.

pairs # ASes Transit AS Stub AS
planetlab 10,539 276 (6) 197 (0) 79 (6)

pl-easy 462 199 (4) 129 (0) 70 (4)
pl-hard 10,077 270 (5) 194 (0) 76 (5)

Table 1: AS-level statistics for PL nodes.

We then split this data set in two smaller sets: pl-easy
and pl-hard. The distinction between the two sets lies in
the co-location of Ark monitors at the source AS. Pairs in the

2

pl-easy set have the source node located in the same AS
as an Ark monitor (namely, amw-us, cbg-uk, cjj-kr, dub-ie,
and gig-br). There are 462 pairs in the set. We expect that
path stitching to return the most accurate results on this set of
nodes. The latter set pl-hard contains the remaining pairs
whose source PL nodes are not in the same ASes as any Ark
monitor. This set is useful to evaluate our methodology for
uncharted (or partially measured) network regions1.

3. PATH STITCHING
Our goal is to estimate end-to-end path and round-trip de-

lay between any two hosts in the Internet without resorting
to active probes but re-using existing network measurement
data. In the design of the path stitching algorithm we are
guided by two main objectives: (i) coverage: the algorithm
must be able to answer even those queries about end sys-
tems that are not present in the existing measurement data
sets; and (ii) accuracy: the estimate should be as close to
the actual measurement as possible. As a first step, we
focus on path and round-trip delay as they address two ba-
sic performance measurement needs for any distributed ap-
plication. From an application developer’s standpoint, path
stitching appears as a simple query-based Internet service: a
query consists of two IP addresses (source and destination)
and the results contain a ranked list of candidate router-level
paths and round-trip delay estimates. Now we begin the de-
scription of the path stitching algorithm.

3.1 Algorithm
Given two IP addresses as input, the path stitching algo-

rithm operates as follows:

Step 1: Map IP addresses to AS numbers. We use the
BGP routing tables to map an IP address to an AS number.
The longest prefix match on the IP address returns the prefix
and corresponding AS path. The last AS number is then
taken as the origin AS for the host. Section 6.1 describes
how we handle the case when the mapping is incorrect or
when a single IP address maps to multiple origin ASes.

Step 2: Infer AS-level paths between ASes. We follow
KnownPath’s methodology [9] to infer AS paths between
two ASes. KnownPath exploits the AS paths already present
in BGP routing tables and infers AS paths by extending these
known AS paths. Its inferred AS paths always conform to
the valley-free property of AS paths [18]. In Section 6.2 we
extend KnownPath to improve its accuracy.

Step 3: Stitch path segments along the inferred AS path.
Taking as input the inferred AS path from Step 2, we extract
router-level path segments from the traceroute database and

1The inter-domain connectivity of Planetlab nodes relies on re-
search networks and may not be representative of the Internet [17].
However, the goal of this data set is to evaluate the accuracy of
our path stitching. We leave the problem of representativeness for
future work.

stitch them up along the inferred AS path. This step may
result in no candidate paths or may lead to too many candi-
date paths. We discuss approximation methodologies for the
former case in Section 4 and preference rules for the latter in
Section 5.

Step 4: Return the best candidate paths and delays. When
Step 3 outputs stitched paths, the final step is to calculate
round-trip delays along the paths and return them as query
result. The results contains both the most recently measured
round-trip delays as well as a distributions of all the mea-
sured delays along the path.

Each step above makes use of the Ark and BGP data. In
order to handle potentially large data sets efficiently, we pre-
process and convert them to a more easily manageable for-
mat. Next, we describe the data conversion process.

3.2 Constructing the path segment repository
We split traceroute outputs into intra-domain segments

and inter-domain segments. The set of intra-domain seg-
ments of a AS A (indicated by :A:) cover all known paths
between any ingress and egress points of the AS A (together
with router-level and latency information). The set of inter-
domain segments between AS A and AS B (indicated by
A::B) describe all inter-AS connections that appear in the
Ark data set. These “path segments” represent the basic
components that are later stitched by our algorithm. Table 2
contains sample path segments from two traceroute outputs,
one from host a to host b, 〈a, a1, a2, b1, b2, b〉 and the other
from host a′ to b′, 〈a′, a1, a3, b3, b2, b

′〉. All a addresses be-
long to AS A and all b addresses belong to AS B. The actual
size of the repository constructed from 14 million traceroute
outputs of the Ark data set is: 2.1M intra-domain segments
and 0.6M inter-domain segments. About 1M unique IP ad-
dresses are observed.

Segment Ingress Egress Interim Delay
:A: a a2 a1 dA

a′ a3 a1 d′A
:B: b1 b b2 dB

b3 b′ b2 d′B
A::B a2 b1 – dAB

a3 b3 – d′AB

Table 2: Path Segment Repository Example

3.3 Query Example
We use the repository in Table 2 to illustrate how we re-

solve a simple query from host a to host b. First, we use
the BGP routing tables to map a to AS A and b to AS B
(Step 1). Again from the BGP tables we derive the AS-level
path from a to b (Step 2), AB in this example. Then, among
the intra-domain segments of A, we search for those that
start with a and find 〈a, a1, a2〉. Then we resolve the portion
A::B by looking for the same ingress and egress points in

3

the repository and find a segment 〈a2, b1〉 that rendezvouses
with the :A: segment at a2. We continue to stitch up in a
similar manner, and the final query result is one single path:
〈a, a1, a2, b1, b2, b〉 with delay dA + dAB + dB .

Actual queries are more complicated to answer than the
above sample case. The following sections address the chal-
lenges in detail.

4. APPROXIMATION IN PATH STITCHING
Path stitching does not always return a stitched path. It

fails when the path segment repository is missing data for
the following three reasons: (i) the source or destination IP
address maps to an AS that is not present in the repository;
(ii) the inter-domain segment is not present in the reposi-
tory; or (iii) the end of a path segment does not match any
of the beginnings of the next path segments (i.e., the segment
cannot be stitched).

Data Type Total AS Transit AS Stub AS
Ark 14378 4418 9960

BGP 28244 4847 23397

Table 3: Number of ASes in Ark and BGP data

The first case of missing ASes has no solution other than
collecting more measurements. Ark monitors operate in a
coordinated manner to probe every routable /24 prefix. Yet
the Ark dataset is missing 50% of ASes present in the BGP
tables (see Table 3). A careful look at the data reveals that
the Ark dataset covers 93% of the transit ASes and just 42%
of the stub ASes2. Furthermore, 89% of the missing ASes
(12, 382 out of 13, 866) correspond to traceroutes that did
not reach their intended destinations and returned incom-
plete results. The 13, 866 ASes not covered in the Ark data
set correspond to approximately 110 million, or 5.8%, of the
IP addresses that originate from all ASes in the BGP data: an
order of magnitude smaller percentage than in the number
of ASes. For those IP addresses, our path stitching cannot
generate any estimate. For future work, we consider incor-
porating a second traceroute-based dataset (DIMES [19]) to
increase the IP address coverage above the current 94.2%
and AS coverage from 50.9%.

The second case of missing inter-domain segments is com-
mon. A possible work-around is to search for a reverse
segment. That is, if we cannot find an inter-domain seg-
ment A::B, we consider the reverse path segment, B::A,
instead, as a potential candidate. This is reasonable given
that inter-domain segments are typically over point-to-point
links and all links are bi-directional3. Our data set contains
61, 606 sets of inter-domain segments and the number grows

2We call an AS transit if it appears in any AS path (not the first nor
the last AS) in a BGP table; otherwise, stub.
3 Note that early exit routing policies (often called hot-potato rout-
ing) only affect intra-domain paths, not AS-level paths.

to 103, 030 after we incorporate the reverse inter-domain
segments.

Figure 1: Example of clustering

We address the third case by clustering IP addresses. Fig-
ure 1 illustrates our solution. In the example, the Ark data
set contains the AS paths X::A::Y and Z::A::W . When a
query for IP addresses x and w arrives, the algorithm infers
correctly an AS path X::A::W , but it is not able to find in
the repository segments that can be stitched together. As in
the case of inter-domain segments, we reverse intra-domain
segments and see if the end points of the segments line up.
Reversing intra-domain segments is in line with the way net-
work operators set link weights for computing the shortest
paths, i.e., the same weight in both directions [20, 21]. In
this example reverse intra-domain segments do not help. We
then resort to approximation by clustering: the dotted circle
in Figure 1 collapses two egress points into one. We employ
multiple levels of clustering, first by the router (called IP
aliasing), the Point-of-Presence (PoP), and the prefix length.
Clustering at the router level has been addressed in previous
work [22, 23] and there exist data sets that have resolved IP
aliasing. Recent work by Madhyastha et al. offers router
aliases as well as PoP clusters [1]. In our evaluation we
use their router aliases and PoP clusters from January 2008
and March 2008, respectively. We extend approximation one
step further than in [1] and allow clustering by the prefix if
router or PoP clustering fails.

The first case is only addressable with additional data. In
Section 7 we evaluate the approximation techniques only for
the last two categories.

5. PREFERENCE RULES
In the previous section, we have discussed cases where

there are no stitched paths after Step 3. Now, we turn our at-
tention to the cases where there are too many stitched paths
for a given query. Our goal in this section is to define the
rules of preference and apply them to trim the list of candi-
date paths. A key insight in designing good preference rules
is to reflect the actual mechanism that route packets through
the network. A good preference rule is therefore one that
effectively discriminates among the various stitched paths
without compromising the accuracy of delay estimates.

5.1 Finding clues to preference rules
To get a sense of the challenges ahead, we take a quick

look at a few PlanetLab measurements described in Sec-

4

0 20 40 60 80 100 120
0

5

10

15

20

End−to−end delay (ms)

S
tit

ch
ed

 p
at

hs

Estimated (most recent)
Estimated (median)
Estimated (iqm)
Real (minimum)
Real (maximum)

(a) planetlab1.csail.mit.edu →
planet2.scs.stanford.edu

0 20 40 60 80 100 120
0

1

2

3

End−to−end delay (ms)

S
tit

ch
ed

 p
at

hs

Estimated (most recent)
Estimated (median)
Estimated (iqm)
Real (minimum)
Real (maximum)

(b) filtering planetlab1.csail.mit.edu →
planet2.scs.stanford.edu

0 50 100 150 200 250 300

5

10

15

20

25

30

35

40

End−to−end delay (ms)

S
tit

ch
ed

 p
at

hs

Estimated (most recent)
Estimated (median)
Estimated (iqm)
Real (minimum)
Real (maximum)

(c) planetlab2.xeno.cl.cam.ac.uk →
pl1-higashi.ics.es.osaka-u.ac.jp

Figure 2: Two examples to demonstrate differences between stitched paths

tion 2.1. We examine the stitched paths and their differences
and scout for clues on how to discriminate among them. In
Figure 2 we compare estimated delays from stitched paths
with on-the-spot measurements for two representative pairs
of PlanetLab nodes.

The first pair (mit.edu to stanford.edu) comes from Plan-
etLab nodes that are located in ASes different from any Ark
monitor. Step 3 of the path stitching algorithm returns 22
candidate paths. The paths traverse two ASes and are de-
rived by stitching together one segment in the source AS,
11 segments in the destination AS (AS32 – Stanford Uni-
versity) and 2 inter-domain segments. Figure 2(a) plots the
median and interquartile mean delays as well as the most
recent delay estimate for each path (we may have multiple
measurements per segment and thus stitched path). The dot-
ted and solid vertical lines represent the minimum and maxi-
mum delays from 150 traceroutes we have collected (on-the-
spot measurements).

Taking a second look at the original path segments, we
notice that the main difference between the various candi-
date paths is the distance between the source and destination
addresses and the start and end points of the stitched paths4.
Only one of the 11 intra-domain segments in AS 32 belongs
to the same /22 prefix as the destination address. Figure 2(b)
plots the delay estimates of the resulting 2 stitched paths
(we keep both inter-domain segments). The estimates, either
most recent or median, are very close to on-the-spot Planet-
Lab node measurements. It appears therefore that restricting
ourselves to paths closer to the destination (or source) ad-
dress allows to drop a large number of candidate paths with
little risk of degrading the estimate accuracy.

The second pair (Figure 2(c)) is between PlanetLab nodes
where the source node (planetlab2.xeno.cl.cam.ac.uk) is lo-
cated in the same AS as an Ark monitor, cbg-uk, and the
destination (p11-higashi.ics.es.osaka-u.ac.jp) is not. The in-
ferred AS path of this pair is 786 20965 2907 4730 and we
obtain 40 stitched paths for this query. We plot again the
4We define “distance” as the size of the prefix that contains both
addresses. For example, two addresses that belong to the same /24
prefix are “closer” than two address that belong to the same /23
prefix (but different /24 prefix).

most recent, median, and interquartile mean of estimated de-
lays per path in Figure 2(c).

In this example, the estimated delays using the most re-
cent delays are about 100 ms smaller than on-the-spot mea-
surements, while the median and interquartile mean delays
match the on-the-spot measurement for 50% of the paths.
The other 50% of the paths are 20 ms larger delays. We have
examined the 40 paths manually and found two intra-domain
segments in AS 20965. These two path segments start and
end at the same ingress and egress routers of AS 20965, but
have different number of internal hops and delays; thus the
overall difference of about 20 ms in Figure 2(c).

Between the two intra-domain segments in AS 20965, the
segment with smaller delay is originally from a traceroute
destined to a prefix in AS 4730, while the longer delays
come from a path to AS 19401 (that does not belong to the
inferred AS path). This example has given us a second idea
for a preference rule: use the original destination prefix of
the traceroute measurement to discard candidate segments.

From the above two examples, we glean two ideas for
preference rules: (i) proximity to the source and destination
address of the query and (ii) destination-bound segments
that are derived from traceroutes with the same destination
prefix. In the following, we examine in detail how effective
these rules are at narrowing down the list of candidate paths.

5.2 Preference Rule #1: Proximity
IP addresses in the Internet far outnumbers ASes and there

is no public data set that contains all the IP addresses. Thus
end points of a query are likely to be not found in the path
segment repository. Our first rule of preference addresses
this problem by proximity. The proximity rule dictates that
the path segments closest to the queried IP addresses are cho-
sen for path stitching. The proximity is measured by the
common prefix length. Although this rule is very effective
at narrowing down the list of candidates5, it is not clear what
impact it might have on the delay estimate.

To address this concern, we plot in Figure 3 the cumu-

5The size of the network prefix (e.g., /22) as a distance metric is an
effective means of discriminating paths, as it allows strict ranking.

5

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay difference (msec)

F
ra

ct
io

n
of

 A
S

es

All paths
Paths updated more than 10 times

Figure 3: Delay difference between the shortest and
longest paths in an AS.

lative distribution function (CDF) of the difference between
minimum and maximum delays across path segments within
each AS in our dataset. For a path segment for which we
have multiple measurements we use the median delay. The
number of ASes plotted is 10, 368, that is 4, 010 fewer than
the total in our Ark dataset: the excluded 4, 010 ASes are all
stub ASes and have just one path segment.

About 61% of the ASes included in the plot have differ-
ences smaller than 1 ms. Between 1 ms to 100 ms, the num-
ber of ASes grows steadily from 61% to 82%, and then be-
yond 100 ms, there is a noticeable jump at 3s (due to the
default traceroute timeout).

In 18% of ASes, the delay difference within an AS is
greater than 100 ms. For those ASes (for delay within an AS
varies widely), finding the closest point to the queried host
along the path segments should lead to improved accuracy
in delay estimation.

5.3 Preference Rule #2:
Destination-Bound Path Segments

Routing decisions in the Internet are made at every hop
based on the destination. As demonstrated by the second ex-
ample of Figure 2(c), the original traceroute from which a
segment is derived helps both in reducing the list of candi-
dates as well as improving the delay estimate.

This is consistent with how packets are routed through a
network: as a packet enters an AS, the ingress router looks
up the destination address of the packet, determines the egress
point based on the destination prefix and routes the packet
towards the egress point. When we segment traceroute out-
puts by the AS and create the path segment repository, we
keep this destination information with the segments and use
it later in path stitching. Using only those segments derived
from traceroutes with the same common destination prefix
(“destination-bound segments”) makes sense as it is consis-
tent with how packets are routed in the Internet.

However, an open question with this rule is whether it is
effective at narrowing down the list of candidates. To answer
this question we look at the number of prefixes in the tracer-
oute outputs that contribute to each segment. Figure 4 plots

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of prefixes per segment

C
D

F
 o

f s
eg

m
en

ts

Figure 4: CDF of number of prefixes per segment

the CDF of the number of prefixes per segment. In the figure,
we consider only those 2, 672 path segments from the source
ASes of the Ark monitors. This is the worst case for us given
that those segments are likely to see the largest number of
destination prefixes. Half of the segments have only 1 pre-
fix, and 80% of segments have fewer than 10 prefixes. Given
that segments have so few prefixes, the destination-bound
segment rule is very likely to reduce the number of candi-
date paths significantly.

5.4 Preference Rule #3:
Most Recent Path Segment

Even after applying the two preference rules described
above, we may be left with more than one candidate path.
At this point we need to define a final preference rule. For
this purpose we decide to rank the candidates according to
the time of the actual measurement (from most to least re-
cent). Indeed, end-to-end routes can change at any moment
in the network, thus the most recent segment is likely to rep-
resent the end-to-end route most accurately. Note that this
rule may still lead to multiple paths given the timestamp res-
olution of the traceroute dataset (that is in the order of 1s).
In such a case we return all as answer to the query.

5.5 Summary
In this section we have described three preference rules

that narrow down the list of candidate stitched paths. We
apply these rules and break ties. The path stitching algo-
rithm first applies the proximity rule to reduce the initial
path segments in the source AS. Then, it selects inter- and
intra-domain path segments towards the destination that are
derived from traceroutes with the same destination prefix.
Finally, it applies the proximity rule at the destination AS.
As a last step, it ranks all the remaining paths (with the same
distance from source and destination address) based on the
timestamp of the measurement.

Our algorithm applies the preference rules segment by
segment from the source to the destination AS, and is locally
greedy. Then how good is our estimate from the best possi-
ble answer? To answer this question, we compare the de-
lay estimate our algorithm returns to the best estimate found

6

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (ms)

C
D

F
 o

f p
ai

rs

pl−easy pairs
pl−hard pairs

Figure 5: Difference in delay estimates between most
likely stitched and best stitched paths

with an exhaustive search in the path segment repository. By
the best estimate, we mean the closest estimate to the actual
measurements. The queries come from our evaluation data
sets pl-easy and pl-hard as described in Section 2.1.
Figure 5 plots the CDF of the absolute difference in the two
delay estimates. The preference rules perform very well:
for 90% of the pl-easy pairs and 85% of the pl-hard
pairs the difference in delay estimates between the stitched
path our algorithm returns and the best path that exists in the
repository is less than 10ms.

6. ADDRESSING SOURCES OF ERROR
In various steps of our path stitching algorithm, errors

present in the original measurement datasets enter the final
estimates if not filtered. We look into these errors in detail,
and explain our approaches in dealing with them. In this sec-
tion we describe major sources of error and our approach to
mitigate their impact.

6.1 IP-to-AS Mapping
The first step in the path stitching algorithm maps the

IP addresses to AS numbers. Accurate mapping poses two
challenges. First, an IP address can be mapped to an in-
correct origin AS. Mao et al. [24, 25] have pointed out that
IP-to-AS mapping techniques based on BGP tables lead to
errors due to route aggregation, interface numbering at AS
boundaries, and routing anomalies. Second, an IP address
can be mapped to multiple ASes, if they have all announced
themselves as origin ASes for that address. This problem is
aptly referred to as Multiple Origin ASes (MOAS). We look
into these two cases in detail, and explain our approaches in
dealing with them.

6.1.1 Single origin AS mismatch
We perform IP-to-AS mapping in two distinct phases of

our methodology. First, to build the path segment repository
(Section 3.2) we map all the IP addresses in the traceroute
outputs to AS numbers and store the entries by the AS num-
ber. Second, in Step 1 of our path-stitching algorithm, we
map the queried IP addresses to their AS numbers. If the

mapping is incorrect in either of the two phases, the inaccu-
racy in our estimates could increase.

Mao et al. [25] have reported that inaccurate IP-to-AS
mappings may cause (1) extra AS hops, (2) missing AS hops,
(3) substitute ASes, and (4) two-hop AS loops. Though di-
verse in patterns, they manifest as one type of error in our
methodology: they all produce path segments with wrong
AS information.

Out of the four types of IP-to-AS mismatches above, we
can identify two-hop AS loops in our Ark data set. The re-
maining three types are not detectable without accurate AS
paths to compare. Performing IP-to-AS mapping on our data
set shows that 8.9 % of traceroutes would lead to two-hop
AS loops. Resolving these loops is not straightforward. For
example, the AS path of ABA should not happen, as no AS
path in a BGP table of an AS contains the owner AS itself.
Now, are we sure that it is the host in the middle that is mis-
matched to AS B? Or should the first host be mapped to
another AS X? Or the last host to AS Y ? Resolving these
loops requires additional information, such as BGP paths
extracted from routers at the measurement sources [24, 25].
We do not have access to such BGP information for all the
sources in our Ark data set.

We have a choice of not using the traceroute outputs with
AS loops in our data set. However, the IP addresses are not
bogus, and only the mapping is problematic6 For this reason,
we choose to include those path segments from AS loops.

Figure 6(a) shows how we incorporate information from
two-hop AS loops. Basically, we add all possible combina-
tions to our database. First, we add a path segment of AS
A with both x1 and x2 inside. Then, we also take segments,
:A:, A::X , and :X:, from AXA. Only the first half or the
second half of the loop is ever likely to be used in our path
stitching, for no inferred AS path will have a two-hop AS
loop. Note that the original IP-to-AS mapping remains con-
sistent and any query with x1 will be mapped to AS X .

Figure 6: Three heuristics in IP-to-AS mapping. Circles
represent IP addresses and rectangles ASes. X|Y is a
MOAS of AS X and Y .

6.1.2 Multiple origin AS
MOAS conflicts are mostly from multi-homing configu-

rations, Internet exchange point addresses, or anycast ad-
6There is a possibility that a route change takes place within a
traceroute and an AS loop appears in the traceroute output. We
assume it to be a rare event and do not address it in this work.

7

dresses [26]. MOAS could be also from human errors or
malicious activities, such as prefix hijacking. Zhao et. al.
show that a large fraction of MOAS conflicts appeared only
once and did not last more than one day, implying that those
short-lived conflicts could be caused by transient BGP mis-
configurations [26].

IP Prefix MOASes in the same country %
205.189.33.0/24 6327 6509 26.18
134.75.20.0/24 1237 17579 25.41
207.231.241.0/24 293 14221 101 3.26
IP Prefix MOASes caused by IXPs %
80.81.192.0/23 12956 8365 10.90
198.32.176.0/24 701 2914 65517 4355 6461 7.72
198.32.160.0/24 6461 22691 12989 3.58
206.223.115.0/24 293 2914 1273 3.02
195.69.144.0/23 286 12956 1200 30132 31283 2.78
206.223.119.0/25 2914 293 2.33
IP Prefix Other MOASes %
69.28.128.0/18 22822 21318 4.85

Table 4: Prefixes with MOAS conflicts. The percentage
refers to the portion of the total number of traceroutes
that exhibit a MOAS conflict.

Let us first analyze the dominant MOAS patterns that we
face in our data set. We map all individual IP addresses in
traceroute outputs to AS numbers: 472 IP prefixes map to
multiple origin ASes. Table 4 lists the top 10 most frequently
encountered MOAS prefixes, and these prefixes contribute
to 90% of the traceroute outputs with MOAS conflicts. Af-
ter manual investigation on these 10 prefixes, we find that
54.85% of MOAS cases are located in the same country.
We suspect AS 6327 (Shaw Communications) and AS 6509
(CANARIE Network) to be from a customer-provider rela-
tion. AS 1237 and AS 17579, MOASes of the prefix 134.75.
20.0/24, even have the same AS name, Korea Institute of
Science and Technology Information (KISTI). These two
ASes are likely to be sibling ASes belonging to the same
organization. The third case of 207.231.241.0/24 involves
three research networks, AS 293 (Energy Sciences Network),
AS 14221 (UW R&D AS), and AS 101 (PNW Gigapop). As
we can see there are many different causes of MOAS. How-
ever, identifying the actual cause is out of scope for this pa-
per. We are interested only on understanding its impact on
the path stitching estimates.

We also observe that 30.33% of MOAS are caused by In-
ternet exchange points (IXPs). Prefixes that belongs to IXPs
are usually mapped to MOAS of one or more of participat-
ing ASes. IXPs do not appear in BGP routing tables and
need a different treatment. To identify prefixes that are as-
signed to IXPs, we use the information available from the
web site of Packet Clearing House (PCH) [27]. One notable
example is the prefix 80.81.192.0/23, and its ownership tran-
scends national boundaries of Spain (AS 12956 is Telefonica
Backbone AS) and Germany (AS 8365 is Metropolitan Area

Network Darmstadt). The whois query on this prefix re-
veals that its network name is DE-CIX-FRA-IXP (Deutscher
Commercial Internet Exchange in Frankfurt, Germany). The
other five prefixes (198.32.176.0/24 to 206.223.115.0/24) are
allocated to PAIX, NYIIX, AMS-IX, EQUINIX-IX-CHI, and
EQUINIX-IX-ASH, respectively.

The last prefix, 69.28.128.0/18, belongs to Limelight Net-
works (AS22822) and Norwegian Open Peering Association
(AS 21318). This MOAS conflict is close in nature to the
MOAS case from Internet exchange points.

In summary a large fraction of MOAS prefixes are caused
by sibling ASes and Internet exchange points in our data
set. Still, we do not have solid grounds to give preference
to one AS over the others. Therefore, our basic policy is
to incorporate all possible combinations of information as
in Section 6.1.1. When a prefix maps to MOAS and none
of the ASes is an IXP, then we allow an IP address to map
to MOAS as in Figure 6(b). If a prefix belongs to an IXP,
then we map it to the ASes before and after the IXP as in
Figure 6(c) and build path segments accordingly.

The key point in dealing with IP-to-AS mapping is to in-
corporate connectivity between ASes despite the mapping
problem. The above heuristics allow us to include those
inter-AS segments in our estimation.

6.2 AS Path Inference
Once we map hosts x and y of a query to their origin AS

numbers, the next step is to infer an AS path between them.
Inferring an AS-level path between two ASes without access
to either of the AS is not simple. Much research has focused
on AS path and topology inference [8–10,28]. For our work,
we use KnownPath [9] as their publicly available tool reports
the best accuracy in AS path inference without the first AS
hop information [9]. It exploits the AS paths already present
in BGP routing tables and infers AS paths by extending these
known AS paths. Its inferred AS paths always conform to
the valley-free property of AS paths [18]. KnownPath may
produce multiple inferred AS paths.

Although KnownPath produces reasonably accurate AS
paths, we still see room for improvement in accuracy given
our datasets. Mao et al. observed that multi-homing is one
of the main obstacles to the accurate AS path inference [8],
and they provide a novel technique to infer the first AS hop.
Qiu and Gao [9] also show that KnownPath’s inference accu-
racy improves by incorporating the first AS hop information.
Mao et al.’s first AS hop inference, however, requires a des-
ignated measurement infrastructure and a large number of
active probes, and we cannot adopt their methodology. Our
choice is, therefore, to extract first-hop information from the
Ark traceroute data. For example, from an AS path ABCD
from a traceroute output, we infer that for the destination AS
D, the first hop ASes of A, B, C are B, C, and D, respec-
tively. From the Ark data, we garner first hop information
for 5, 387 ASes.

It has been reported that links not reported in BGP rout-

8

ing tables appear in measurements in the data plane [29–
32]. ISPs do not advertise all links to their peers via BGP.
For example, peering links are not advertised to other peers.
Those links are operational, and appear in the Ark traceroute
outputs. He et al. [31] report 40% more edges and 300%
more peer-to-peer edges and Roughan et al. [32] estimate
700 monitors are needed to identify 99.9% edges. As the
goal of this work is not to devise a new algorithm to identify
missing links, we demonstrate how to incorporate additional
information to the existing database of AS topology.

We regard each Ark monitor as a BGP peer, and from each
monitor’s traceroute outputs, we extract several fields that
make up BGP table entries: destination prefixes, next hops
(monitor’s addresses), and AS paths. We exclude traceroute
outputs that do not reach the destination ASes. We also ex-
clude incomplete traceroute outputs (one or more hops are
missing). AS paths from traceroute outputs may contain
loops or MOASes and we remove those AS paths as well.
We investigate in more detail the accuracy of KnownPath
for the inferred paths in our data set in Section 7.

6.3 Traceroute

6.3.1 Internet dynamics captured by traceroute
Topology changes and traffic fluctuations are the two main

factors that cause network performance change. For this
work we use one round of Ark data sets captured in 3 days.
For some segments, the delay measurements are already 3
days old by the time we take up the Ark data set. Other
path segments are repeatedly updated throughout the 3 days.
For example, all traceroutes that originate from the same Ark
monitor share the common router hops near that monitor and
corresponding segments are updated very frequently.

To calibrate the network performance dynamics in our
data, we pick out intra-domain and inter-domain path seg-
ments that are updated more than twice and more than ten
times. In our data set, 28% of intra-domain and 55% of inter-
domain path segments are updated more than twice, and 6%
of intra-domain and 22% of inter-domain segments more
than ten times. For those path segments, we calculate the
standard deviation (σ) of the delay measurements and plot
it in Figure 7. We observe that about 80% of intra-domain
and 85% of inter-domain path segments (updated more than
10 times) have σ less than 10 ms, while 0.025% of intra-
domain and 0.013% of inter-domain segments have σ larger
than 100 ms.

Given the variability in the data, we need to decide which
delay our algorithm should return for a given path. Some
application need the most up-to-date information about de-
lay while others [33] are more interested in the trend (for
which the median delay would be useful). Our algorithm is
agnostic to the choice. We leave the choice to the application
and our query results contain both the median and the most
recent measurements.

6.3.2 Nondecreasing delay principle

1 10 20 30 100 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard deviation (msec)

F
ra

ct
io

n
of

 p
at

h
se

gm
en

ts

Intra−domain
Inter−domain
Intra−domain (updated > 10 times)
inter−domain (updated > 10 times)

Figure 7: Standard deviation of delays

Delay reported at every hop in traceroute should be strictly
nondecreasing. However, we observe a large number of tracer-
oute outputs that break this principle. Let us consider the
following example:

Traceroute results from 143.248.140.1 to 128.32.255.43
1 143.248.140.1 0.236 A
2 143.248.117.114 0.290 A
3 143.248.117.18 0.358 A
4 143.248.119.2 0.487 A
5 134.75.20.70 0.612 B
6 134.75.108.210 114.918 B
7 207.231.245.129 289.926 C
8 137.164.27.134 133.526 D
9 128.32.0.35 133.653 E

10 128.32.255.43 133.401 E

When building the path segment repository, we break this
10-hop IP path into 7 path segments. During this process,
we calculate delay of each segment relative to the segment’s
first hop latency. For example, delay of the 2-hop path seg-
ment (hop 5, hop 6) of :B: is 114.306 by subtracting the first
hop latency, 0.612. However, the delay for the next segment
(hop 6, hop 7) becomes 175.008 and that for (hop 7, hop
8) becomes −156.4. A negative delay of a segment in the
middle is very likely an artifact of processing overhead at a
router 207.231.245.129.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

D
el

ay
 (

m
se

c)

Hop

Outliers
Calibrated delays

Figure 8: Filtering outliers in traceroute delays

Since we use traceroute outputs, we are inherently con-
strained by the idiosyncrasies that stem from traceroute [34].
One solution could be to seek other data sets that explicitly

9

measure one-way delays. However, lacking the additional
data, we adopt a very simple heuristic to deal with occasional
spikes in traceroute-based delay measurements by forcing
the measured delays to be strictly nondecreasing. For ease
of explanation, we plot the delays from the above traceroute
output against the hop number in Figure 8. The dotted line
represents the delays from traceroute. If the difference in de-
lay between two adjacent hops (hops 7 and 8 in Figure 8) is
below zero, we calculate the differences between the latter
hop and preceding hops (between 8 and 6, 8 and 5, and so
on), and find the first hop of positive difference (hop 6). De-
lays from all those hops in between (hop 7) are considered
outliers and removed. We then draw a straight line over the
outliers (between hops 6 and 8) and extrapolate delays from
the line (the solid line in the figure). This simple heuristic
has allowed us to retain 60% of Ark data.

6.4 Summary
In this section, we have reviewed three sources of error

in our methodology: IP-to-AS mapping, AS path inference,
and traceroute-based delay measurement. For errors in IP-
to-AS mapping, we propose to incorporate all possible com-
binations so that we do not lose connectivity information be-
tween ASes. In order to improve the accuracy in AS path
inference, we glean inter-AS segments from traceroute data
to exploit knowledge of the first hop AS. For delay measure-
ments that contain segments of negative delay, we propose a
simple heuristic to extrapolate reasonable estimates and re-
tain this way more than half of the original Ark data.

7. EVALUATION
In this section we demonstrate step-by-step how estimates

from our path stitching fare in comparison to on-the-spot ac-
tual measurements. For the evaluation, we use the two sets
of measurements, pl-easy and pl-hard, as described in
Section 2.1. First, we evaluate the overall quality of AS path
inference in Step 2 of path stitching. Then we show how
much value the approximation methods in Section 4 bring
to Step 3. We employ several rules of preference in Step
3 when there are multiple candidate segments. We demon-
strate how each preference rule reduces deviation in delay
estimates from real measurements. As a final part in evalua-
tion, we compare our results against iPlane [1].

7.1 AS Path Accuracy
The accuracy of inferred AS paths is critical to our method-

ology. In Section 6.2 we have proposed to augment Known-
Path [9] with AS path information we glean from Ark tracer-
oute outputs. In this section we show the marginal utility of
the traceroute data on the quality of AS path inference.

For every pair of source and destination hosts in pl-easy
and pl-hard, we execute Steps 1 and 2 of our algorithm
and obtain inferred AS paths. We produce inferred AS path
both using vanilla KnownPath (i.e., using only BGP routing
tables) and with the first AS hop information derived from

the Ark data set. For all pairs in pl-easy and pl-hard
we also have the actual measured AS paths.

In order to quantify the accuracy of the inferred AS path
we use the Jaccard similarity coefficient as in [35].It consid-
ers an AS path as a set of ASes, and calculates the similarity
as the ratio of the number of common ASes to the number
of ASes in the union of the two AS paths.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AS path similarity

F
ra

ct
io

n
of

 p
ai

rs

pl−easy: KnownPath
pl−easy: KnownPath augmented
pl−hard: KnownPath
pl−hard: KnownPath augmented

Figure 9: AS Path similarity

Figure 9 shows the AS path similarity on the two datasets.
The most striking result comes from pl-easy. When vanilla
KnownPath is used, only 18% of inferred AS paths are ex-
act matches of the measured AS paths. When KnownPath is
augmented using traceroute data, the exact matches jump to
72%. This improvement shows the potential value of the ad-
ditional information. Improvement in AS path similarity for
the other set, pl-hard, is not as great as in pl-easy: only
from 19% to 26%. Further investigation reveals that for the
host pairs in pl-hard there is no first AS hop information
from our Ark data set. For the remaining 74% of partially
matched paths in pl-hard, 77% inferred paths are equal to
or shorter than the actual AS paths, and for the 44% shorter
paths, 18% of them are a proper subsets of the correspond-
ing actual paths. In the rest of this section all inferred AS
paths are from augmented KnownPath.

7.2 Approximation Methods
The goal of the approximation methods in Section 4 is to

produce approximate stitched paths in the face of no stitched
path. In this section we show how many more paths the ap-
proximation methods allow to find.

For both sets of pl-easy and pl-hard we stitch path
segments along the measured AS paths and inferred AS paths
and work with the following four cases: pl-easy with the
measured AS paths, pl-easy with the inferred AS paths,
pl-hard with the measured AS paths, and pl-hard with
the inferred AS paths. We compute the fraction of pairs that
find stitched paths without any approximation. Then we ap-
ply approximation methods one by one (from the most to
the least stringent): reverse path segments, router-level and
PoP-level clustering, clustering by the /28, /24, and finally
/16 prefix. As predicted, the above approximation methods,
if applied one by one, show incremental improvement in the

10

fraction of pairs with stitched paths.

pl−easy pl−easy pl−hard pl−hard
0

10

20

30

40

50

60

70

80

90

100

F
ra

ct
io

n
of

 p
ai

rs
 (

%
)

no approximation
reverse segment
router/PoP
prefix/28
prefix/24
prefix/16

w/ measured
AS path

w/ measured
AS path

w/ inferred
AS path

w/ inferred
AS path

Figure 10: Fraction of pairs with stitched paths

The fraction of pairs with stitched paths does not differ
much between the measured and inferred AS path cases of
pl-easy. Because the Ark monitors are co-located with
the source hosts of pl-easy, 70% of inferred AS paths
match the measured AS paths (Figure 9). Yet for 13.6% or
63 pairs, there exists no stitched path. We have two explana-
tions. For 59 or about 12.8% of pairs, their AS paths include
ASes or inter-AS links that are not present in the Ark data
set. For the remaining 4 or 0.9% of pairs, the path segments
cannot be stitched no matter what clustering we use.

The case of pl-hard is more complicated. When no ap-
proximation is used, only 6% of pairs find stitched paths with
measured AS paths and even less with inferred AS paths.
Considering the fact that no Ark monitor resides in the same
AS as the source hosts in pl-hard, even those small num-
bers are surprising. Those originating ASes have appeared
on some routes in the Ark data set. The largest increment in
the fraction of pairs comes when we use reverse segments.
Further relaxation on clustering constraints show definite in-
cremental improvement. The Ark data set covers about half
of the ASes observed in BGP. In order to bring the fraction of
pairs with stitched paths from 70% with measured AS paths
and 68% with inferred AS paths to the level of pl-easy,
data sets with a wider coverage of ASes are needed.

Additionally, we repeat the evaluation without router and
PoP-level approximations. Resolving router aliases and clus-
tering at the PoP-level require a large number of additional
probes. Our interest here is to evaluate our algorithm when
those datasets are not available. Indeed, the additional dataset
bring limited benefit: clustering with /28 and /24 prefix and
without router and PoP, we miss only 5 (0.04%) pairs for the
pl-hard with measured AS paths case, and 165 (1.6%)
pairs for the pl-hard with inferred AS paths case. For
pl-easy cases, there are no missing pairs.

As a last note, clustering by /16 prefix does not bring
much gain over clustering by /24 prefix, while the magni-
tudes of prefixes differ greatly. For the rest of this section,
we use clustering by /24 and do not use clustering by /16.

7.3 Evaluation of Preference Rules

Approximation methods are useful when no stitched path
is found. The opposite case is when there are too many path
segments to stitch. In this section we demonstrate how each
preference rule reduces the number of candidate path seg-
ments, as well as deviation in delay estimates from real mea-
surements.

If an inferred AS path includes a transit AS with a large
number of intra-domain segments, it is not practical to con-
sider all possible combinations of path segments. In our path
segment repository, the median number of segments of tran-
sit ASes in the Ark data set is 25, and the maximum number
even reaches 124, 317. If an inferred AS path includes a
transit AS with a large number of intra-domain segments, it
is not practical to consider all possible combinations of path
segments, for we need just one at the end of our estimation
process. In this section we demonstrate how each preference
rule reduces the number of candidate path segments, as well
as deviation in delay estimates from real measurements.

To isolate the effect of preference rules from other fac-
tors, we consider only those host pairs in pl-easy and
pl-hard that find stitched paths without any approxima-
tion method. We are left with 393 pl-easy pairs and 572
pl-hard pairs. We do not use the inferred AS path, but use
the measured AS paths.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ai

rs

Number of stitched paths

proximity+dst.bound+most recent
proximity+dst.bound
raw

Figure 11: CDF of no. of stitched paths of planetlab

In Figure 11 we draw the cumulative distribution func-
tion of the number of stitched paths per host pair. The dot-
ted red line marked ‘raw’ represents the total number of
stitched paths before we apply any preference rule. We see
that almost 60% of host pairs have 500 or more stitched
paths. Now we apply the preference rules of proximity and
destination-bound path segments and see the number of stitched
paths decrease greatly. Still, about 30% of host pairs have
about 100 or more stitched paths. Only when we use the
segments of most recent measurement, we see the number
of stitched paths drop to 1 for almost all pairs. Just a few
pairs have more than 1 stitched paths, for traceroute outputs
are timestamped with the 1 s granularity and some segments
have the same time stamps.

We have shown that the preference rules are effective in
reducing the number of stitched paths and thus speeding up

11

0 50 100 150 200 250 300 350

−500
−450
−400
−350
−300
−250
−200
−150
−100

−50
0

50
100
150
200
250
300
350
400
450
500

Pairs

D
el

ay
 (

m
s)

raw
proximity+dst.bound
proximity+dst.bound+most recent
real

(a) pl-easy

0 100 200 300 400 500

−500
−450
−400
−350
−300
−250
−200
−150
−100

−50
0

50
100
150
200
250
300
350
400
450
500

Pairs

D
el

ay
 (

m
s)

(b) pl-hard

Figure 12: Improvement in delay estimation

the estimation process greatly. Now we are interested to see
if the reduction in stitched paths has any impact on the qual-
ity of delay estimates.

In Figure 12 we plot the minimum and maximum delay
estimates of all stitched paths per query against actual mea-
surements. For the ease of illustration, we peg the minimum
of measured delays to 0 ms in Figure 12. We draw the differ-
ence between the maximum and minimum measured delay
as a dashed line. It represents variability in actual measure-
ments. Values that fall between the dashed line and the hori-
zontal line of 0 ms delay are basically indistinguishable from
real measurements.

We evaluate the following two combinations of preference
rules: (i) only with the proximity and destination-bound pre-
fixes and (ii) with the first two plus the most recently up-
dated segments. The colors in the bar graph lightens as more
preference rules apply. The lightening trend in colors indi-
cates that our preference rules not only reduce the number of
stitched paths, but also bring the estimates close to the actual
measurements.

For more than 100 pairs in both pl-easy and pl-hard
the difference between the minimum and maximum mea-
sured delays grows beyond 100 ms. What is the best esti-
mate when actual measurements exhibit such large variabil-
ity? We leave this choice to the users of our path stitching.
We conduct our evaluation with the most recent measure-

ments, but will leave options for users to obtain other metrics
about the stitched path when we implement path stitching as
a system.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute error (ms)

F
ra

ct
io

n
of

 p
ai

rs

proximity+dst.bound+most recent
proximity+dst.bound
raw

(a) pl-easy

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute error (ms)

F
ra

ct
io

n
of

 p
ai

rs

(b) pl-hard

Figure 13: Improvement in absolute error

We summarize the trend in Figure 12 by plotting the cu-
mulative distribution of absolute errors in Figure 13. By ab-
solute error we mean the sum of delay estimates that fall
outside the minimum and maximum measurements. If both
the minimum and maximum estimates both fall within the
dashed lines, then we consider the absolute error to be 0 (i.e.,
the stitched paths are as good as the actual measurements).
Figure 13 shows that the absolute error is the smallest when
all the three rules of preference are used. Only 10% of pairs
have absolute error greater than 20 ms. We observe very sim-
ilar improvement in delay estimation with preference rules in
pl-hard.

Finally, we investigate whether improvements in absolute
errors reflect similar improvements in relative errors. We
define the relative error as the absolute error divided by the
minimum delay measurement (the value that maps to the
x = 0 for each host pair) and scatter-plot it in Figure 14.
From left to right, more preference rules are applied and the
spread of relative errors diminishes for both pl-easy and
pl-hard.

We conclude that preference rules are effective in reduc-
ing the number of stitched paths, and at the same time bring
delay estimates close to the actual measurements in both ab-
solute and relative errors.

12

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5
R

el
at

iv
e

er
ro

rs

0 50 100 150 200 250

Absolute errors (ms)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

raw proximity+dst.bound+most recentproximity+dst.bound

(a) pl-easy

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

R
el

at
iv

e
er

ro
rs

0 50 100 150 200 250

Absolute errors (ms)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

proximity+dst.boundraw proximity+dst.bound+most recent

(b) pl-hard

Figure 14: Relative error vs. absolute error

7.4 Comparison with iPlane
In this section we compare our methodology against iPlane.

Most latency prediction systems based on network coordi-
nates require full-mesh type of measurements between par-
ticipating nodes and are not amenable to take the Ark data
set as input [4].

We choose to compare our algorithm to iPlane [1] that
uses a similar structural approach to latency prediction and
it has been shown to provide more accurate results than other
solutions [4, 14]. iPlane reports an absolute latency error of
less than 20 ms for 77% of paths. In our case pl-easy
shows less than 20 ms for 90% of the pairs (Figure 13), while
pl-hard return errors below 20 ms for 80% of pairs.

For more detailed comparison, we use iPlane to process
our data set and examine the outcome. We obtained the bi-
nary code of the iPlane system and fed our Ark data set to
it and in addition related data7 (PoP and router-level clus-
tering information and IP-to-AS mapping) collected during
the same measurement period as the Ark data set. By doing
so, we effectively turn the Ark monitors to iPlane vantage
points. The current implementation of iPlane has more than
100 vantage points and they together combined probe every
BGP atom [36]. We use pl-easy and pl-hard query sets
for the evaluation.

First, we examine the number of successful answers. Our
numbers are 367 with /24 clustering and inferred AS paths in
pl-easy and 6103 with the same combination in pl-hard,
while iPlane returns 325 out of 462 in pl-easy and 5109
out of 10, 077 in pl-hard. With measured AS paths, we
got 399 and 7048, respectively (see Figure 10). We find the
numbers comparable and for the rest of the evaluation, we

7available from http://iplane.cs.washington.edu

use only those pairs that both iPlane and our path stitching
return answers.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute errors (ms)

C
D

F

path stitching /w measured AS path
path stitching /w inferred AS path
iPlane

(a) pl-easy

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute errors (ms)

C
D

F
path stitching w/ measured AS path + router/PoP
path stitching w/ measured AS path + prefix/24
path stitching w/ inferred AS path + router/PoP
path stitching w/ inferred AS path + prefix/24
iPlane

(b) pl-hard

Figure 15: Absolute errors

In Figure 15 we plot the CDF of absolute errors. In the
case of pl-easy (top graph), we only show results with
/24 clustering because other approximation methods return
almost the same results. Path stitching reports consistently
smaller absolute errors. We note that the iPlane performance
observed in Figure 15 is comparable to the best case reported
in Figure 4 of [35]. As we have seen in Figure 10 a rel-
atively large fraction of pairs are stitched with approxima-
tion methods in the case of pl-hard. Therefore, we draw
separate graphs for pairs with different approximation meth-
ods. We draw a graph for the results with the router and PoP
clustering and with the /24 prefix-level clustering. Overall,
path stitching shows consistently better performance with
very small absolute errors (below 5 ms.) Path stitching with
router and PoP clustering performs very close to iPlane be-
low 35 ms, and gradually shows better performance after-
wards. Path stitching with inferred AS path and /24 cluster-
ing shows better performance than iPlane only after 50 ms.
In both plots of pl-easy and pl-hard the performance
of iPlane does not improve much beyond 50 ms. As we do
not have access to the source code, we cannot provide further
explanation. One conjecture we have is iPlane does not in-
corporate any data filtering mechanisms, as suggested in [37]
or in Section 6.3.2, and anomalously large delays could have

13

an impact on the tail of the distribution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Relative errors

path stitching w/ measured AS path
path stitching w/ inferred AS path
iPlane

(a) pl-easy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative errors

C
D

F

path stitching w/ measured AS path + roueter/PoP
path stitching w/ measured AS path + prefix/24
path stitching w/ inferred AS path + roueter/PoP
path stitching w/ inferred AS path + prefix/24
iPlane

(b) pl-hard

Figure 16: Relative errors

In Figure 16 we plot the relative errors. In the case of
pl-easy, 90% of pairs have relative errors smaller than
0.4 in path stitching, while relative errors in iPlane do not
change much beyond 1. As in the case of absolute errors,
iPlane performs better in pl-hard up to relative errors of
0.6 than path stitching with /24 clustering and inferred AS
paths, but otherwise path stitching shows better performance.
In both Figures 15(c) and (d) relative errors of iPlane do not
converge. We proffer the same lack of data filtering mecha-
nisms as an explanation.

In Figure 16 we plot the relative errors. In the case of
pl-easy, 90% of pairs have relative errors smaller than
0.4 in path stitching, while relative errors in iPlane do not
change much beyond 1. As in the case of absolute errors,
iPlane performs better in pl-hard up to relative errors of
0.6 than path stitching with /24 clustering and inferred AS
paths, but otherwise path stitching shows better performance.
In both Figures 16(a) and (b) relative errors of iPlane do not
converge. We proffer the same lack of data filtering mecha-
nisms as an explanation.

8. RELATED WORK

Internet-Wide Measurements
CAIDA’s Ark project is the successor of Skitter and main-
tains a repository of 10 years worth traceroute outputs from

tens of sources to every /24 prefix [21]. Its data has been
shared widely by the research community [2]. DIMES ex-
pands the coverage of Ark-like centralized data collection by
endorsing volunteers who contribute traceroute outputs orig-
inating from their machines [39]. DIMES compliments Ark
with measurements originating from mostly stub networks.
However, it has been shown that additional end-to-end path
measurements have to be carefully chosen to bring in signif-
icant improvements in terms of network coverage [38]. In
order to avoid measuring every path, NetQuest suggests a
Bayesian experimental design in choosing active measure-
ments for maximum information [39]. Donnet et al. pro-
poses a tree-based exploration of the topology in order to
reduce measurement traffic [40].

RouteViews [15] and RIPE RIS [16] are the major sources
of Internet routing information. They store snapshots and
updates of the BGP (Border Gateway Protocol) routing pro-
tocol contributed by many ISPs.

All these studies employ various measurement techniques
to derive Internet-wide performance characteristics. In our
work, we focus on retrieving relevant data from these exist-
ing measurements.

Network Performance Estimation
Instead of taking measurements over every path, researchers
have looked into estimation methodologies from a limited
number of measurements. One approach is to use landmarks
for estimating network distances between two arbitrary In-
ternet hosts. IDMaps deploys landmarks (or tracers) that
measure distances between themselves [41]. For the dis-
tance between two end hosts, IDMaps selects two nearest
landmarks to the source and the destination, and returns the
sum of the distances between the hosts and their selected
landmarks, and between two selected landmarks. DDM is
similar to IDMaps but organizes landmarks into hierarchy to
locate the nearest landmarks efficiently [42]. King exploits
DNS servers as their landmarks [43].

Another approach to Internet distance estimation is net-
work embedding. The main idea of this technique lies in
reducing the dimension of collected measurements to a low
dimensional space of the Internet hosts; thus the name, “net-
work coordinates [44, 45]. PIC [46], NPS [47], and Vi-
valdi [4] take one step further and propose a decentralized
approach where each participating host measures and shares
the information with other hosts (or peers). More recently,
Agarwal et al. combine network embedding with geoloca-
tion, by initializing network coordinates to the actual loca-
tions of the nodes [48]. Their approach shows improvement
in convergence time and delay prediction error.

The complexity and inaccuracy incurred by network em-
bedding techniques have been analyzed in [7,49] and in part
motivated a structural approach to measurements [3, 35]. In
particular, Abrahao et al. points out a possible reduction in
dimensionality when delay within an AS is considered. Our
AS-based segmentation and stitching approach aligns well

14

with this insight [7].

Network Performance Estimation As a Service
In today’s distributed applications, network performance data
sharing among end users is limited. Aggarwal et al. have
proposed an oracle service hosted by ISPs [50]. This oracle
service ranks the queried peers according to certain metrics
such as the number of AS hops to the users. ISPs do not need
to measure performance, as they already have direct access
to customers’ bandwidth and link delay information. The or-
acle service is mostly for peer-to-peer applications and relies
on peer-to-peer applications to respect the ranking. Mad-
hyastha et al. [1] have end hosts run active measurements
and return estimated latency, loss rate, and capacity to their
iPlane system in order to construct an annotated atlas of the
Internet. Our work is a founding block to a network-wide
estimation service similar in spirit to the above two services.

9. CONCLUSIONS
In this work, we have presented and evaluated path stitch-

ing, a new approach to end-to-end Internet performance esti-
mation. Existing measurement systems are naturally limited
by the number of available vantage points. Instead of de-
ploying yet another measurement system, we have described
how multiple data sets from existing infrastructures can be
used together to provide relatively accurate performance mea-
surements of uncharted portions of the Internet. We show
that our path stitching approach performs comparably to ex-
isting measurement systems that require extensive new data
collection campaigns.

Future work will focus on incorporating additional datasets
and focus on other metrics of interest to distributed applica-
tions such as loss rate, available bandwidth, etc. We also
plan to demonstrate the impact of path stitching in the de-
velopment and performance of common distributed applica-
tions. In that context we are currently working on a DNS-
like interface that would allow existing distributed applica-
tion to issue queries about end-to-end path quality and per-
formance. This would allow to better understand the real
impact of estimate errors on the end-user experience.

10. REFERENCES
[1] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek,

Colin Dixon, Thomas Anderson, Arvind
Krishnamurthy, and Arun Venkataramani, “iPlane: An
information plane for distributed services,” in USENIX
OSDI, November 2006.

[2] Ming Zhang, Chi Zhang, Vivek Pai, Larry Peterson,
and Randy Wang, “Planetseer: Internet path failure
monitoring and characterization in wide-area
services,” in USENIX OSDI, August 2004.

[3] Bernard Wong, Aleksandrs Slivkins, and Emin Gun
Sirer, “Meridian: A light weight network location
service without virtual coordinates,” in ACM
SIGCOMM, August 2005.

[4] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert
Morris, “Vivaldi: A decentralized network coordinate
system,” in ACM SIGCOMM, September 2004.

[5] Shansi Ren, Lei Guo, and Xiaodong Zhang, “ASAP:
an AS-Aware Peer-relay protocol for high quality
VoIP,” in IEEE ICDCS, July 2006.

[6] F. Thomson Leighton, Ravi Sundaram, Andrian
Soviani, Matthew Levine, Andrew Parker, Silvina
Hanono-Wachman, and Arthur W. Berger, “Method
for predicting file download time from mirrored data
centers in a global computer network,” May 2001.

[7] Bruno Abrahao and Robert Kleinberg, “On the
Internet delay space dimensionality,” in ACM
SIGCOMM IMC, October 2008.

[8] Zhuoqing Morley Mao, Lili Qiu, Jia Wang, and Yin
Zhang, “On AS-level path inference,” in ACM
SIGMETRICS, Banff, Canada, June 2005, ACM Press.

[9] Jian Qiu and Lixin Gao, “AS path inference by
exploiting known as paths,” in IEEE GLOBECOM,
November 2006.

[10] Wolfgang Muhlbauer, Anja Feldmann, Olaf Maennel,
Matthew Roughan, and Steve Uhlig, “Building an
as-topology model that captures route diversity,” in
ACM SIGCOMM, September 2006.

[11] Praveen Yalagandula, Puneet Sharma, Sujata Banerjee,
Sujoy Basu, and Sung-Ju Lee, “S3: A scalable sensing
service for monitoring large networked systems,” in
ACIRI Technical Report, September 2006.

[12] Young Hyun, Bradley Huffaker, Dan Andersen, Emile
Aben, Colleen Shannon, Matthew Luckie, and
kc claffy, “The CAIDA IPv4 routed /24 topology
dataset - Apr’08,”
http://www.caida.org/data/active/
ipv4_routed_24_topology_dataset.xml.

[13] Yin Zhang, Vern Paxson, and Scott Shenker, “The
stationarity of Internet path properties: routing, loss,
and throughput,” in ACIRI Technical Report, June
2004.

[14] Harsha V. Madhyastha, Ethan Katz-Bassett, Thomas
Anderson, Arvind Krishnamurthy, and Arun
Venkataramani, “iPlane nano: Path prediction for
peer-to-peer applications,” in USENIX NSDI, April
2009.

[15] Advanced network technology center and
University of Oregon, “The RouteViews project,”
http://www.routeviews.org.

[16] “RIPE Routing Information Service,”
http://www.ripe.net/ris.

[17] Suman Banerjee, Timothy G. Griffin, and Marcelo
Pias, “The interdomain connectivity of planetlab
nodes,” in PAM, Antibes Juan-les-Pins, France, April
2004.

[18] Lixin Gao, “On inferring autonomous system
relationships in the Internet,” IEEE/ACM TON, vol. 9,
no. 6, pp. 733–745, 2001.

15

[19] Yuval Shavitt and Eran Shir, “DIMES: Let the Internet
measure itself,” SIGCOMM CCR, vol. 35, no. 5, pp.
71–74, 2005.

[20] Antonio Nucci, Supratik Bhattacharyya, Nina Taft,
and Christophe Diot, “IGP link weight assignment for
operational tier-1 backbones,” IEEE/ACM TON, vol.
15, no. 4, 2007.

[21] Brian Fortz and Mikkel Thorup, “Optimizing
OSPF/IS-IS weights in a changing World,” IEEE
JSAC, vol. 20, no. 4, pp. 765–767, 2001.

[22] Ramesh Govindan and Hongsuda Tangmunarunkit,
“Heuristics for Internet Map Discovery,” in IEEE
INFOCOM, March 2000.

[23] Neil Spring, Ratul Mahajan, David Wetherall, and
Thomas Anderson, “Measuring ISP topologies with
Rocketfuel,” in IEEE/ACM TON, 2004.

[24] Zhuoqing Morley Mao, David Johnson, Jennifer
Rexford, Jia Wang, and Randy Katz, “Scalable and
accurate identification of AS-level forwarding paths,”
in IEEE INFOCOM, March 2004.

[25] Zhuoqing Morley Mao, Jennifer Rexford, Jia Wang,
and Randy Katz, “Towards an accurate AS-level
traceroute tool,” in ACM SIGCOMM, August 2003.

[26] Xiaoliang Zhao, Dan Pei, Lan Wang, Dan Massey,
Allison Mankin, S. Felix Wu, and Lixia Zhang, “An
analysis of BGP multiple origin as (MOAS) conflicts,”
in ACM SIGCOMM IMW, SF, USA, November 2001.

[27] “Packet clearing house,” http://www.pch.net.
[28] Lakshminarayanan Subramanian, Sharad Agarwal,

Jennifer Rexford, and Randy H. Katz, “Characterizing
the Internet hierarchy from multiple vantage points,”
in IEEE INFOCOM, June 2002.

[29] Hyunseok Chang, Ramesh Govindan, Sugih Jamin,
Scott Shenker, and Walter Willinger, “Towards
capturing representative AS-level Internet topologies,”
Computer Networks, vol. 44, pp. 737–755, 2002.

[30] Rami Cohen and Danny Raz, “The Internet dark
matter - on the missing links in the AS connectivity
map,” in IEEE INFOCOM, April 2006.

[31] Yihua He, Georgos Siganos, Michalis Faloutsos, and
Srikanth Krishnamurthy, “A systematic framework for
unearthing the missing links: measurements and
impact,” in USENIX NSDI, April 2007.

[32] Matthew Roughan, Simon Jonathan Tuke, and Olaf
Maennel, “Bigfoot, sasquatch, the yeti and other
missing links: What we don’t know about the AS
graph,” in ACM SIGCOMM IMC, October 2008.

[33] Youngki Lee, Sharad Agarwal, Chris Butcher, and Jitu
Padhye, “Measurement and Estimation of Network
QoS among Peer Xbox 360 Game Players,” in PAM,
April 2008.

[34] Abhinav Pathak, Himabindu Pucha, Ying Zhang,
Y. Charlie Hu, and Z. Morley Mao, “A measurement
study of Internet delay asymmetry,” in PAM, April
2008.

[35] Harsha V. Madhyastha, Thomas Anderson, Arvind
Krishnamurthy, Neil Spring, and Arun Venkataramani,
“Structural approach to latency prediction,” in ACM
SIGCOMM IMC, October 2006.

[36] A. Broido and kc claffy, “Analysis of routeviews BGP
data: policy atoms,” in Network-related Data
Management Workshop, 2001.

[37] Jonathan Ledlie, Paul Gardner, and Margo Seltzer,
“Network coordinates in the wild,” in USENIX NSDI,
2007.

[38] Paul Barford, Azer Bestavros, John Byers, and Mark
Crovella, “On the marginal utility of network topology
measurements,” in IEEE INFOCOM, SF, USA,
November 2001.

[39] Han Hee Song, Lili Qiu, and Yin Zhang, “Netquest: A
flexible framework for large-scale network
measurement,” in ACM SIGMETRICS, June 2006.

[40] Benoit Donnet, Philippe Raoult, and Timur Friedman,
“Deployment of an algorithm for large-scale topology
discovery,” IEEE JSAC, vol. 24, no. 12, pp.
2210–2220, 2006.

[41] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin,
Danny Raz, Yuval Shavitt, and Lixia Zhang, “IDMaps:
A global Internet host distance estimation service,”
IEEE/ACM TON, vol. 9, no. 5, 2001.

[42] Wolfgang Theilmann and Kurt Rothermel, “Dynamic
distance maps of the internet,” in IEEE INFOCOM,
March 2000.

[43] Krishna P. Gummadi, Stefan Saroiu, and Steven D.
Gribble, “King: Estimating latency between arbitrary
Internet end hosts,” in ACM IMW, November 2002.

[44] Marcelo Pias, Jon Crowcroft, Steve Wilbur, Tim
Harris, and Saleem Bhatti, “Lighthouses for scalable
distributed location,” in IPTPS, February 2003.

[45] Yuval Shavitt and Tomer Tankel, “Big-bang
simulation for embedding network distances in
euclidean space,” in IEEE INFOCOM, March 2003.

[46] M. Costa, Miguel Castro, Antony Rowstron, and Peter
Key, “PIC: Practical Internet coordinates for distance
estimation,” in ICDS, March 2004.

[47] T. S. Eugene Ng and Hui Zhang, “A network
positioning system for the Internet,” in USENIX
Conference, June 2004.

[48] Sharad Agarwal and Jacob R. Lorch, “Matchmaking
for online games and other latency-sensitive P2P
systems,” in ACM SIGCOMM, August 2009.

[49] Eng Keong Lua, Timothy Griffin, Marcelo Pias, Han
Zheng, and Jon Crowcroft, “On the accuracy of
embeddings for Internet coordinate systems,” in ACM
SIGCOMM IMC, October 2005.

[50] Vinay Aggarwal, Anja Feldmann, and Christian
Scheideler, “Can ISPs and P2P users cooperate for
improved performance?,” SIGCOMM CCR, vol. 37,
no. 3, pp. 31–40, 2007.

16

